K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 10 2018

Áp dụng bđt Mincopxki:

\(\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\)

\(\ge\sqrt{\left(x+y+z\right)^2+\left(1+1+1\right)^2}=\sqrt{\left(x+y+z\right)^2+9}\)

\(AM-GM:\left(x+y+z\right)^2+9\ge2\sqrt{9\left(x+y+z\right)^2}=6\left(x+y+z\right)\)

\(\Leftrightarrow\sqrt{\left(x+y+z\right)^2+9}\ge\sqrt{6\left(x+y+z\right)}\)

\(\Leftrightarrow\sqrt{x^2+1}+\sqrt{y^2+1}+\sqrt{z^2+1}\ge\sqrt{6\left(x+y+z\right)}\)

31 tháng 1 2020

Cách dùng C-S:

\(VT=\sum\limits_{cyc} \sqrt{x^2+1}=\sqrt{x^2 +y^2 +z^2 +3 +2\sum\limits_{cyc} \sqrt{(x^2+1)(y^2+1)}}\)

\(\geq \sqrt{x^2 +y^2 +z^2 +3 +2\sum\limits_{cyc} (xy+1)}\)\(=\sqrt{\left(x+y+z-3\right)^2+6\left(x+y+z\right)}\ge\sqrt{6\left(x+y+z\right)}\)

Đẳng thức xảy ra khi \(x=y=z=1\)