K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 12 2015

Ta có

x,y,z,t thuộc N*

=>x<x+y+z 

=>\(0<\frac{x}{x+y+z}<1\) 

=>\(\frac{x}{x+y+z}\notin N\)

CM tương tự với 3 số còn lại

=>điều cần chứng minh

Nếu bài làm của mình đúng thì tick nha bạn,cảm ơn nhiều.

16 tháng 3 2017

\(x;y;z;t\in N\)nên ta có :

\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}\)

\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}\)

\(\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}\)

\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}\)

Cộng vế với vế ta được :

\(\frac{x+y+z+t}{x+y+z+t}< \frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}< \frac{2\left(x+y+z+t\right)}{x+y+z+t}\)

\(\Rightarrow1< M< 2\)

=> M có giá trị không phải là số tự nhiên

16 tháng 3 2017

Với\(x,y,z,t\in\)N*,ta có :\(\frac{x}{x+y+z+t}< \frac{x}{x+y+z}< \frac{x}{x+y}\left(1\right)\)

\(\frac{y}{x+y+z+t}< \frac{y}{x+y+t}< \frac{y}{x+y}\left(2\right);\frac{z}{x+y+z+t}< \frac{z}{y+z+t}< \frac{z}{z+t}\left(3\right)\)

\(\frac{t}{x+y+z+t}< \frac{t}{x+z+t}< \frac{t}{z+t}\left(4\right)\)

Cộng (1),(2),(3),(4),vế theo vế,ta có :\(\frac{x+y+z+t}{x+y+z+t}< M< \frac{x+y}{x+y}+\frac{z+t}{z+t}\)hay 1 < M < 2 

Vậy M không phải là số tự nhiên

AH
Akai Haruma
Giáo viên
6 tháng 1

Lời giải:

Với $x,y,z,t$ là số tự nhiên khác 0 thì:

$\frac{x}{x+y+z}> \frac{x}{x+y+z+t}$

$\frac{y}{x+y+t}> \frac{y}{x+y+z+t}$

$\frac{z}{y+z+t}> \frac{z}{x+y+z+t}$

$\frac{t}{x+z+t}> \frac{t}{x+y+z+t}$

$\Rightarrow M> \frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=\frac{x+y+z+t}{x+y+z+t}=1$
$\Rightarrow M>1(*)$

Mặt khác:

Có: $\frac{x}{x+y+z}-\frac{x+t}{x+y+z+t}=\frac{-yt-tz}{(x+y+z)(x+y+z+t)}<0$

$\Rightarrow \frac{x}{x+y+z}< \frac{x+t}{x+y+z+t}$

Tương tự:

$\frac{y}{x+y+t}< \frac{y+z}{x+y+z+t}$

$\frac{z}{y+z+t}< \frac{z+x}{x+y+z+t}$

$\frac{t}{x+z+t}< \frac{t+y}{x+y+z+t}$

Cộng lại ta được: $M< \frac{(x+t)+(y+z)+(z+x)+(t+t)}{x+y+z+t}=2(**)$

Từ $(*); (**)\Rightarrow 1< M < 2$ nên $M$ không là số tự nhiên.

13 tháng 6 2015

\(M>\frac{x}{x+y+z+t}+\frac{y}{x+y+z+t}+\frac{z}{x+y+z+t}+\frac{t}{x+y+z+t}=1\)

Ta chứng minh \(\frac{a}{b}

22 tháng 12 2016

chứng minh \(\frac{x}{x+y+z}+\frac{y}{x+y+t}+\frac{z}{y+z+t}+\frac{t}{x+z+t}\)không phải số tự nhiên

11 tháng 3 2020

ta có *x/x+y+z+t<x/x+y+z<x/x+y

và *y/x+y+z+t<y/x+y+t<y/x+y

*z/x+y+z+t<z/y+z+t<z/z+t

*t/x+y+z+t<t/x+z+t<t/z+t

=> cộng các vế cho nhau, ta có:

(x/x+y+z+t)+(y/x+y+z+t)+(z/x+y+z+t)+(t/x+y+z+t)<M<(x/x+y)+(y/x+y)+(z/z+t)+(t/z+t)

hay x+y+z+t/x+y+z+t<m<(x+y/x+y)+(z+t/z+t)

=>1<M<2 => m ko có giá trị là số tự nhiên

CHÚC BẠN HỌC TỐT!!!

27 tháng 10 2015

\(3\left(x-5\right)^2-5=22\)

\(3\left(x-5\right)^2=22+3\)

   \(\left(x-5\right)^2=27.3\)

    \(\left(x-5\right)^2=81\)

    \(\left(x-5\right)^2=9^2\)

    \(\left(x-5\right)=9\)

    \(x=9+5\)

    \(x=14\)

Đúng nha

27 tháng 10 2015

\(3\left(x-5\right)^2-5=22\)

\(3\left(x-5\right)^2=22+5\)

\(3\left(x-5\right)^2=27\)

\(\left(x-5\right)^2=27:3\)

\(\left(x-5\right)^2=9\)

\(\left(x-5\right)^2=3^2\)

\(x-5=3\)

\(x=3+5\)

\(x=8\)

30 tháng 12 2015

m=x+y+z+t/x+y+z+x+y+t+y+z+t+x+z+t=1/3