Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề sai rồi, không thể tồn tại x; y sao cho \(\left\{{}\begin{matrix}x+y=3\\xy=5\end{matrix}\right.\) được
Vì \(\left(x+y\right)^2\ge4xy;\forall x;y\) nên \(3^2>4.5\) là vô lý
a: \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2\cdot5=-1\)
b: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3\cdot3\cdot5=-18\)
= ( x3 + 3x2y + 3xy2 + y3 ) - 6xy - 3x2 - 3y2 + 3x + 3y + 2012
= ( x + y )3 - 3xy - 3x2 - 3xy - y2 + 3. ( x + y ) + 2012
= ( x + y )3 - 3x ( x + y ) - 3y .( x + y ) + 3.( x + y ) + 2012
= ( x + y )3 - 3.( x + y ) ( x + y ) + 3( x + y ) + 2012
= 1013 - 3.1012 + 3.101 + 2012
= 1002013
Ta có :
(x + y)2 = (30)2 = 900
<=> x2 + 2xy + y2 = 900
<=> x2 - 2xy + y2 + 4xy = 900
<=> (x - y)2 = 900 - 4.216 = 36
Mà x > y
=> x - y luông dương
=> x - y = 6
=> A = (x + y)(x - y) = 30 . 6 = 180
Ta có:
\(\left(x+y\right)^2=x^2+2xy+y^2=30^2=900\))0
=> \(x^2-2xy+y^2=900-216.4=36\)
=> x-y =6
=> \(x^2-y^2=\left(x+y\right)\left(x-y\right)=30.6=180\)
Ta có:
A=x2-2xy+y2+4xy-4xy
=(x+y)2-4xy
=9-40
=-31
B=x2+y2+2xy-2xy
=(x+y)2-2xy
=9-20
=-11
C=x3+y3
=(x+y)(x2-xy+y2)
=3.(-21)
=-63
\(x+y=5\Rightarrow\left(x+y\right)^2=25\)
\(\Rightarrow x^2+2xy+y^2=25\)
\(\Rightarrow x^2+y^2=25-2xy=25-2.4=17\)
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=5.\left(17-4\right)=65\)
Ta có:\(\left(x-y\right)^2+2xy=x^2-2xy+y^2+2xy=x^2+y^2\)
\(\Rightarrow x^2+y^2=\left(x-y\right)^2+2xy\)
\(=7^2+2.60=49+120=169\)
\(A=\left(x-y\right)\left(x+y\right)=7\left(x+y\right)\)
Có \(\left(x-y\right)^2=49\)
\(\Leftrightarrow x^2+y^2-2xy=49\)
\(\Leftrightarrow\left(x^2+y^2+2xy\right)-4xy=49\)
\(\Leftrightarrow\left(x+y\right)^2=289\)
\(\Leftrightarrow x+y=17\)
\(\Rightarrow A=7.17=119\)
Vậy ....
Có:\(x+y=30\Rightarrow\left(x+y\right)^2=900\Rightarrow x^2+y^2+2xy=900\Rightarrow x^2+y^2=900-2.216=468\)(Vì xy=216)
Lại có: \(\left(x-y\right)^2=x^2+y^2-2xy=468-2.216=0\Rightarrow x-y=0\)
\(A=x^2-y^2=\left(x+y\right)\left(x-y\right)=30.0=0\)