K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 9 2019

x+y=2

\(\Rightarrow\)x=1; x=0; x=-1; x=-2;...

y=1; y=2; y=3; y=4;...

\(\Rightarrow\)x.y= 1.1=1=1

0.2=0<1

-1.3=-3<1

-2.4=-8<1

.............

\(\Rightarrow\)Nếu x+y=2 thì x.y\(\le\)1

27 tháng 9 2019

Ta có: \(x+y=2\)

\(\Rightarrow x=2-y.\)

Có: \(x.y=\left(2-y\right).y\)

\(\Rightarrow x.y=2y-y^2\)

\(\Rightarrow x.y=-y^2+2y-1+1\)

\(\Rightarrow x.y=-\left(y-1\right)^2+1.\)

\(\left(y-1\right)^2\ge0\) \(\forall y.\)

\(\Rightarrow-\left(y-1\right)^2\le0\) \(\forall y.\)

\(\Rightarrow-\left(y-1\right)^2+1\le1\) \(\forall y.\)

\(\Rightarrow x.y\le1\left(đpcm\right).\)

Chúc bạn học tốt!

9 tháng 4 2019

đợi mk làm đã

9 tháng 4 2019

Thì trả lời mau lên mk tick cho ok

1 tháng 8 2017

Ta thấy: \(\left(x+y\right)^2-\left(x-y\right)^2=4xy\)
Thay x + y = 2 vào biểu thức trên ta được:
\(2^2-\left(x-y\right)^2=4xy\)
\(\Rightarrow4-\left(x-y\right)^2=4xy\)
Do \(\left(x-y\right)^2\ge0\) ( mọi x và y )
\(\Rightarrow4-\left(x-y\right)^2\le4\) ( mọi x và y )
\(\Rightarrow4xy\le4\) ( mọi x và y )
\(\Rightarrow xy\le1\) ( mọi x và y )
Vậy với mọi x và y, nếu \(x+y=2\) thì \(xy\le1\). Đẳng thức xảy ra khi và chỉ khi:
\(4xy=4\)
\(\Rightarrow4-\left(x-y\right)^2=4\)
\(\Rightarrow\left(x-y\right)^2=0\)
\(\Rightarrow x-y=0\)
\(\Rightarrow x=y\)

1 tháng 8 2017

đặt x = 1 + a ; y = 1 - a thì x + y = ( 1 + a ) + ( 1 - a ) = 2

xy = ( 1 + a ) . ( 1 - a )

xy = 1 - a2

Mà a2 \(\ge\)0

\(\Rightarrow\)1 - a2 \(\le\)1