Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x-y\right)^2\ge0\)
\(\Rightarrow\left(x+y\right)^2\ge4xy\)
\(\Rightarrow xy\le\dfrac{\left(x+y\right)^2}{4}=\dfrac{2019^2}{4}\)
Dấu = xảy ra khi \(x=y=\dfrac{2019}{2}\)
a) Ta có:
x-y=0 (1)
\(M=7x-7y+4ax-4ay\)
\(M=7\cdot\left(x-y\right)+4a\cdot\left(x-y\right)\) (2)
Thay (1) vào (2), ta được
\(M=7\cdot0+4a\cdot0\)
\(M=0+0\)
\(M=0\)
Vậy M=0
\(x+y=4\Leftrightarrow x=4-y\)
\(M=xy=y\left(4-y\right)\)
\(M=4y-y^2\)
\(M=-y^2+4y\)
\(M=-y^2+4y-4+4\)
\(M=-\left(y^2-4y+4\right)+4\)
\(M=-\left(y-2\right)^2+4\le4\)
Dấu "=" xảy ra khi: \(y=2\)
x + y = 10. Tìm giá trị lớn nhất của P = xy.
HD: x + y = 10 y = 10 – x. Thay vào P ta có:
P = x(10 – x) = -x2 + 10x = -(x2 – 10x + 25 – 25) = -(x – 5)2 + 25 >= 25.
Vậy GTLN của P = 25 khi x = y = 5
Bài 1:
Ta thấy: $(x+\frac{1}{2})^2\geq 0$ với mọi $x\in\mathbb{R}$
$\Rightarrow (x+\frac{1}{2})^2+\frac{5}{4}\geq \frac{5}{4}$
Vậy gtnn của biểu thức là $\frac{5}{4}$
Giá trị này đạt tại $x+\frac{1}{2}=0\Leftrightarrow x=-\frac{1}{2}$
Bài 2:
$x+y-3=0\Rightarrow x+y=3$
\(M=x^2(x+y)-(x+y)x^2-y(x+y)+4y+x+2019\)
\(=-3y+4y+x+2019=x+y+2019=3+2019=2022\)
giá trị lớn nhất của tích xy=0
có lẽ là 0 vì khi x+y=1 <=> x hoặc y có gái trị 0 hawocj giá trị âm