Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(C=x^2-y^2\)
Tương tự câu \(A=x^2+y^2\)
\(D=x^4+y^4\)
Thay x + y = 17; x.y = 60 vào \(\left(x+y\right)^2=x^2+2xy+y^2\):
172 = x2 + 2.60 + y2
289 = x2 + 120 + y2
\(\Leftrightarrow x^2+y^2=169\)
Lại có:
\(\left(x^2+y^2\right)^2=x^4+y^4+2x^2y^2\)
\(\left(x^2+y^2\right)^2=x^4+y^4+\left(2xy\right)^2\)
Thay \(x^2+y^2=169;x.y=60\)vào biểu thức trên:
1692 = x4 + y4 + 2 . 602
\(\Leftrightarrow x^4+y^4=28561-7200\)
\(\Leftrightarrow x^4+y^4=21361\)
Ta có:\(\left(x-y\right)^2+2xy=x^2-2xy+y^2+2xy=x^2+y^2\)
\(\Rightarrow x^2+y^2=\left(x-y\right)^2+2xy\)
\(=7^2+2.60=49+120=169\)
\(A=\left(x-y\right)\left(x+y\right)=7\left(x+y\right)\)
Có \(\left(x-y\right)^2=49\)
\(\Leftrightarrow x^2+y^2-2xy=49\)
\(\Leftrightarrow\left(x^2+y^2+2xy\right)-4xy=49\)
\(\Leftrightarrow\left(x+y\right)^2=289\)
\(\Leftrightarrow x+y=17\)
\(\Rightarrow A=7.17=119\)
Vậy ....
C1: Ta có: \(x-y=7\Leftrightarrow\left(x-y\right)^2=49\Leftrightarrow x^2-2xy+y^2=49\Leftrightarrow x^2+y^2=49+2xy=49+2.60=169\)
=>\(B=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=7\left(169+60\right)=7.229=1603\)
C2: \(B=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=\left(x-y\right)\left[\left(x-y\right)^2+3xy\right]=7\left(7^2+3.60\right)=7.229=1603\)
\(M=4x^2+9y^2-12xy\)
\(M=\left(4x^2+12xy+9y^2\right)-24xy\)
\(M=\left(2x+3y\right)^2-24xy\)
\(M=2^2-288=-284\)
Ta có: \(x-y=7\Rightarrow x=y+7\)
Thay vào: \(y\left(y+7\right)=60\)
\(\Leftrightarrow y^2+7y-60=0\)
\(\Leftrightarrow\left(y-5\right)\left(y+12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=5\\y=-12\left(ktm\right)\end{cases}}\Rightarrow y=5\Rightarrow x=12\)
Từ đó:
\(N=5^4+12^4=625+20736=21361\)
Ta có A = 2018.2020 + 2019.2021
= (2020 - 2).2020 + 2019.(2019 + 2)
= 20202 - 2.2020 + 20192 + 2.2019
= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B
=> A = B
b) Ta có B = 964 - 1= (932)2 - 12
= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1)
= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1)
(932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80
mà A = (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10
=> A < B
c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)
=> A < B
d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)
=> A < B
a). -121
b). Casio hoặc Phan Đăng Nhật Minh
giải ra giúp mình