\(x>y>0\) ;   \(x-y=7\)và \(xy...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 1 2019

a). -121

b). Casio hoặc Phan Đăng Nhật Minh 

3 tháng 1 2019

giải ra giúp mình

3 tháng 7 2018

\(C=x^2-y^2\)

Tương tự câu \(A=x^2+y^2\)

\(D=x^4+y^4\)

Thay x + y = 17; x.y = 60 vào \(\left(x+y\right)^2=x^2+2xy+y^2\):

172 = x2 + 2.60 + y2

289 = x2 + 120 + y2

\(\Leftrightarrow x^2+y^2=169\)

Lại có:

\(\left(x^2+y^2\right)^2=x^4+y^4+2x^2y^2\)

\(\left(x^2+y^2\right)^2=x^4+y^4+\left(2xy\right)^2\)

Thay \(x^2+y^2=169;x.y=60\)vào biểu thức trên:

169= x+ y+ 2 . 602

\(\Leftrightarrow x^4+y^4=28561-7200\)

\(\Leftrightarrow x^4+y^4=21361\)

3 tháng 7 2018

Ta có:\(\left(x-y\right)^2+2xy=x^2-2xy+y^2+2xy=x^2+y^2\)

\(\Rightarrow x^2+y^2=\left(x-y\right)^2+2xy\)

\(=7^2+2.60=49+120=169\)

3 tháng 7 2018

\(A=\left(x-y\right)\left(x+y\right)=7\left(x+y\right)\)

Có \(\left(x-y\right)^2=49\)

\(\Leftrightarrow x^2+y^2-2xy=49\)

\(\Leftrightarrow\left(x^2+y^2+2xy\right)-4xy=49\)

\(\Leftrightarrow\left(x+y\right)^2=289\)

\(\Leftrightarrow x+y=17\)

\(\Rightarrow A=7.17=119\)

Vậy ....

3 tháng 7 2018

+)Ta có: x2+y2=169 (câu a) 

<=> (x+y)2-2xy=169

<=>(x+y)2=169+2xy=169+2.60=289

<=>x+y=17

=>\(C=x^2-y^2=\left(x-y\right)\left(x+y\right)=7.17=119\)

+) x2+y2=169 

<=>(x2+y2)2=1692

<=>x4+2x2y2+y4=28561

<=>x4+y4=28561-2(xy)2=28561-2.602=28561-7200=21361

3 tháng 7 2018

C1: Ta có: \(x-y=7\Leftrightarrow\left(x-y\right)^2=49\Leftrightarrow x^2-2xy+y^2=49\Leftrightarrow x^2+y^2=49+2xy=49+2.60=169\)

=>\(B=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=7\left(169+60\right)=7.229=1603\)

C2: \(B=x^3-y^3=\left(x-y\right)\left(x^2+xy+y^2\right)=\left(x-y\right)\left[\left(x-y\right)^2+3xy\right]=7\left(7^2+3.60\right)=7.229=1603\)

7 tháng 10 2020

\(M=4x^2+9y^2-12xy\)

\(M=\left(4x^2+12xy+9y^2\right)-24xy\)

\(M=\left(2x+3y\right)^2-24xy\)

\(M=2^2-288=-284\)

7 tháng 10 2020

Ta có: \(x-y=7\Rightarrow x=y+7\)

Thay vào: \(y\left(y+7\right)=60\)

\(\Leftrightarrow y^2+7y-60=0\)

\(\Leftrightarrow\left(y-5\right)\left(y+12\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=5\\y=-12\left(ktm\right)\end{cases}}\Rightarrow y=5\Rightarrow x=12\)

Từ đó:

\(N=5^4+12^4=625+20736=21361\)

20 tháng 6 2021

Ta có A = 2018.2020 + 2019.2021

= (2020 - 2).2020 + 2019.(2019 + 2) 

= 20202 - 2.2020 + 20192 + 2.2019

= 20202 + 20192 - 2(2020 - 2019) = 20202 + 20192 - 2 = B

=> A = B

b) Ta có B = 964 - 1= (932)2 - 12 

= (932 + 1)(932 - 1) = (932 + 1)(916 + 1)(916 - 1) = (932 + 1)(916 + 1)(98 + 1)(98 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(94 - 1) 

= (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1)(92 - 1) 

  (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).80 

mà A =   (932 + 1)(916 + 1)(98 + 1)(94 + 1)(92 + 1).10

=> A < B

20 tháng 6 2021

c) Ta có A = \(\frac{x-y}{x+y}=\frac{\left(x-y\right)\left(x+y\right)}{\left(x+y\right)^2}=\frac{x^2-y^2}{x^2+2xy+y^2}< \frac{x^2-y^2}{x^2+xy+y^2}=B\)

=> A < B

d) \(A=\frac{\left(x+y\right)^3}{x^2-y^2}=\frac{\left(x+y\right)^3}{\left(x+y\right)\left(x-y\right)}=\frac{\left(x+y\right)^2}{x-y}=\frac{x^2+2xy+y^2}{x-y}< \frac{x^2-xy+y^2}{x-y}=B\)

=> A < B