Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^2-y^2=\left(x-y\right)\left(x+y\right)=7.\left(x+y\right)\)
ta có: \(\left(x-y\right)^2=49\Leftrightarrow x^2+y^2-2xy=49\Leftrightarrow\left(x^2+y^2+2xy\right)-4xy=49\Leftrightarrow\left(x+y\right)^2=289\Leftrightarrow x+y=17\)
=> A= 7.17=119
b) \(x^4+y^4=\left(x+y\right)^4-\left(4x^3y+6x^2y^2+4xy^3\right)=17^4-2xy\left(2x^2+3xy+2y^2\right)=17^4-120\left[2\left(x^2+y^2\right)+3.60\right]\)
\(=17^4-120\left[2\left(x^2+y^2\right)+3.60\right]==17^4-120\left[2.119+3.60\right]=33361\)
Từ x-y=7 xy=60=>(x-y)2+2xy=72+2.60=>x2+y2=169
=>(x-y)2+4xy=72+4.60
=>x2-2xy+y2+4xy=49+240
=>(x+y)2=289
=>x+y=17 hoặc x+y=-17
a)x2-y2=(x-y)(x+y)=7(x+y)
*)x+y=17=>x2-y2=7.17=119
*)x+y=-17=>x2-y2=7.(-17)=-119
b)Ta có:(x+y)4=174=(-17)4=83521
=>x4+y4+4x3y+4xy3+6x2y2=83521
=>x4+y4+4xy(x2+y2)+6.(602)=83521
=>x4+y4+4.60.169+21600=83521
=>x4+y4+62160=83521
=>x4+y4=21361
Bài 2:
a: \(A=x^2+8x\)
\(=x^2+8x+16-16\)
\(=\left(x+4\right)^2-16\ge-16\)
Dấu '=' xảy ra khi x=-4
b: \(B=-2x^2+8x-15\)
\(=-2\left(x^2-4x+\dfrac{15}{2}\right)\)
\(=-2\left(x^2-4x+4+\dfrac{7}{2}\right)\)
\(=-2\left(x-2\right)^2-7\le-7\)
Dấu '=' xảy ra khi x=2
c: \(C=x^2-4x+7\)
\(=x^2-4x+4+3\)
\(=\left(x-2\right)^2+3\ge3\)
Dấu '=' xảy ra khi x=2
e: \(E=x^2-6x+y^2-2y+12\)
\(=x^2-6x+9+y^2-2y+1+2\)
\(=\left(x-3\right)^2+\left(y-1\right)^2+2\ge2\)
Dấu '=' xảy ra khi x=3 và y=1
\(M=4x^2+9y^2-12xy\)
\(M=\left(4x^2+12xy+9y^2\right)-24xy\)
\(M=\left(2x+3y\right)^2-24xy\)
\(M=2^2-288=-284\)
Ta có: \(x-y=7\Rightarrow x=y+7\)
Thay vào: \(y\left(y+7\right)=60\)
\(\Leftrightarrow y^2+7y-60=0\)
\(\Leftrightarrow\left(y-5\right)\left(y+12\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}y=5\\y=-12\left(ktm\right)\end{cases}}\Rightarrow y=5\Rightarrow x=12\)
Từ đó:
\(N=5^4+12^4=625+20736=21361\)