K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 7 2017

Áp dụng bđt Cô-si:

\(4=x^2+x^2+\frac{1}{x^2}+\frac{y^2}{4}\ge4\sqrt[4]{x^2.x^2.\frac{1}{x^2}.\frac{y^2}{4}}=4\sqrt[4]{\frac{x^2y^2}{4}}\)

=>\(\sqrt[4]{\frac{x^2y^2}{4}}\le1\Rightarrow x^2y^2\le4\Rightarrow xy\ge-2\)

Dấu "=" xảy ra khi x=-1 và y=2 hoặc x=1 và y=-2

3 tháng 7 2017

x2+x2+\(\frac{1}{x^2}+\frac{y^2}{4}=4\)

áp dụng bất đẳng thức cosi 

\(x^2+\frac{1}{x^2}\ge2\sqrt{x^2.\frac{1}{x^2}}\)

=>\(x^2+\frac{1}{x^2}\ge2\)1

\(x^2+\frac{y^2}{4}\ge2\sqrt{x^2.\frac{y^2}{4}}\)

=>\(x^2+\frac{y^2}{4}\ge xy\)2

từ 1,2 =>\(4\ge2xy\Rightarrow2\ge xy\)