Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: x - 5y chia hết cho 17
<=> 10.(x - 5y) chia hết cho 17
=> 10x - 50y chia hết cho 17
Vì (10x - 50y) - (10x + y) = -51y
Mà -51y chia hết cho 17
Nên 10x + y chia hết cho 17
4 x. 3y = 4 . 18x <=> (22)x .3y = 22. (2.32)x <=> 22x . 3y = 2 2+x . 32x
Từ đó ta có : 2x = 2+ x => x = 2 ; y = 2x = 2.2 = 4
Vậy x+y =2+ 4 = 6
Ta có: \(\frac{x+y}{16}=\frac{x-y}{18}\)
=> 18(x + y) = 16(x - y)
=> 18x + 18y = 16x - 16y
=> 18x - 16x = -16y - 18y
=> 2x = -34y
=> x = -17y
Khi đó: \(\frac{-17y+y}{16}=\frac{-17y.y}{17}\)
=> \(\frac{-16y}{16}=-y^2\)
=> \(-y+y^2=0\)
=> y(y - 1) = 0
=> \(\orbr{\begin{cases}y=0\\y-1=0\end{cases}}\)
=> \(\orbr{\begin{cases}y=0\\y=1\end{cases}}\)
Với y = 0 => x = -17.0 = 0
y= 1 => x = -17 . 1 = -17
Vậy ....
Ta có :
3x + y chia hết cho 17
Suy ra ( 3x + 2y)9 = 27x + 18y cũng chia hết cho 17 (1)
Mà: (27x + 18y) - (10x + y) = 17x - 17y chia hết cho 17 (2)
Từ (1) và (2) suy ra điều phải chứng minh.
\(\left(4x-1\right)\left(y-3\right)=18\)
\(\Rightarrow\left(4x-1\right);\left(y-3\right)\in U\left(18\right)=\left\{1;2;3;6;9;18\right\}\left(x,y\inℤ^+\right)\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(\dfrac{1}{2};31\right);\left(\dfrac{3}{4};12\right);\left(1;9\right);\left(\dfrac{7}{4};6\right);\left(\dfrac{5}{2};5\right);\left(\dfrac{19}{4};4\right)\right\}\left(x,y\inℤ^+\right)\)
\(\Rightarrow\left(x;y\right)\in\left\{\left(1;9\right)\right\}\left(x,y\inℤ^+\right)\)
Áp dụng t/c dãy tỉ số bằng nhau ta có :
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y}{2+4}=\dfrac{18}{6}=3\)
\(\Leftrightarrow\left\{{}\begin{matrix}\dfrac{x}{2}=3\\\dfrac{y}{3}=3\\\dfrac{z}{4}=3\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=6\\y=9\\z=12\end{matrix}\right.\)
Vậy ..
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{x}{2}=\dfrac{y}{3}=\dfrac{z}{4}=\dfrac{x+y}{2+3}=\dfrac{18}{5}=3,6\)
\(\Rightarrow\left[{}\begin{matrix}\dfrac{x}{2}=3,6\Rightarrow x=7,2\\\dfrac{y}{3}=3,6\Rightarrow y=10,8\\\dfrac{z}{4}=3,6\Rightarrow z=14,4\end{matrix}\right.\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
a) \(\frac{x}{7} = \frac{y}{2} = \frac{{x + y}}{{7 + 2}} = \frac{{18}}{9} = 2\)
Vậy x = 7 . 2 = 14; y = 2.2 = 4
b) \(\frac{x}{7} = \frac{y}{2} = \frac{{x - y}}{{7 - 2}} = \frac{{20}}{5} = 4\)
Vậy x = 7.4 = 28; y = 2.4 = 8
Ta có : y(x+y+z) + x(x+y+z) + z(x+y+z) = 18 +(-12) + 3
=> (x+y+z)^2 = 9
=> x+y+z = 3 hoặc -3
Xét x+y+z = 3
=> y = 6 ; x = -4 ; z = 1
Xét x+y+z = -3
=> y = -6 ; x= 4 ; z = -1
Vậy (x;y;z) = (6;-4;1) ; (-6;4;-1)