K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 8 2017

X+ Y= X3 + 3X2Y + 3 XY2+ Y2+ 3XY - 3 X2Y- 3XY2

=(x + y ) + 3xy. ( 1 - x - y )

=( x + y)3 + 3xy . [ 1 - (x - y) ]

= 13 + 3xy. ( 1-1)

=1

mik cũng ko chắc nữa nhé

11 tháng 8 2017

Ta có :x3 +y3 +3xy=(x+y)(x2 -xy+y2)+3xy

mà x+y=1

=>x2 -xy+y2+3xy=x+2xy+y2 =(x+y)2=12 =1

10 tháng 11 2017

Ta có: x2+y=y2+x

=>x2+y-y2+x=0

=>(x2-y2)-(x-y)=0

=>(x-y)(x+y)-(x-y)=0

=>(x-y)(x+y-1)=0

=>x-y=0 hoặc x+y-1=0

=>x+y=1(TH1 loại do x khác y)

ta có:A=x3+y3+3xy(x2+y2)+6x2y2(x+y)

=>A=(x+y)(x2-xy+y2)+3x3y+3xy3+6x2y2

=>A=x2-xy+y2+3x3y+3xy3+6x2y2

=>A=(x+y)2-3xy+3x2y(x+y)+3xy2(x+y)

=>A=1-3xy+3x2y+3xy2

=>A=1+3xy(-1+a+b)

=>A=1+3xy(-1+1)

=>A=1+3xy.0

=>A=1

Vậy A=1 khi x2+y=y2+x và x khác y.

4 tháng 11 2019

Lê Đức Huy chép sai đề cau đầu kìa!

6 tháng 8 2015

x3+y3=x3+3x2y+3xy2+y2+3xy-3x2y-3xy2

=(x+y)3+3xy.(1-x-y)

=(x+y)3+3xy.[1-(x+y)]

=13+3xy.(1-1)

=1

11 tháng 7 2017

13 - 3xy . (1-1) = 1 

>_< chúc bn học tốt

15 tháng 7 2016

 \(P=x^3+3xy+y^3=x^3+3xy\left(x+y\right)+y^3=\left(x+y\right)^3=1^3=1\)

30 tháng 6 2018

x^3+ y^3+ 3xy

=(x+y)(x^2 -xy + y^2 ) + 3xy
=x^2  -xy + y^2 + 3xy

=x^2 + 2xy + y^2

=(x+y)^2 =1

=> x^3+ y^3+ 3xy=1

1 tháng 7 2018

còn câu b ai giúp m vs

13 tháng 6 2016

Từ x+y=1 (GT)

=>(x+y)3=13=1

=>x3+3x2y+3xy2+y3=1 (HĐT)

=>x3+y3+3xy(x+y)=1

=>x3+y3+3xy*1=1

=>x3+y3+3xy=1

13 tháng 6 2016
từ x+y=1=>x=1-y thay vào biểu thức trên ta được: (1-y)^3+3(1-y)y+y^3=1-3y+3y^2-y^3+3y-3y^2+y^3=1
12 tháng 7

13 = (\(x+y\))3 = \(x^3\) + 3\(x^2\)y + 3\(xy^2\) + y3 = \(x^3\)+y3+3\(xy\)(\(x+y\))

1 = \(x^3\)+y3+3\(xy\)

12 tháng 7

13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\)y + 3\(xy\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\))

1 = \(x^3\) - y3 - 3\(xy\)

12 tháng 7

12 tháng 7

b; 13 = (\(x-y\))3 = \(x^3\) - 3\(x^2\).y + 3\(xy^2\) - y3 = \(x^3\) - y3 - 3\(xy\)(\(x-y\)

    1 = \(x^3\) - y3 - 3\(xy\)

15 tháng 8 2018

a)  \(x+y=1\)

=>   \(\left(x+y\right)^3=1\)

<=>  \(x^3+y^3+3xy\left(x+y\right)=1\)

<=>  \(x^3+y^3+3xy=1\)

b)  \(x-y=1\)

=>  \(\left(x-y\right)^3=1\)

<=>  \(x^3-y^3-3xy\left(x-y\right)=1\)

<=>  \(x^3-y^3-3xy=1\)