K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
24 tháng 3 2018

Lời giải:

Ta có: \(A=\left(1-\frac{4}{x^2}\right)\left(1-\frac{4}{y^2}\right)\)

\(A=\frac{(x^2-4)(y^2-4)}{x^2y^2}\)

\(A=\frac{[x^2-(x+y)^2][y^2-(x+y)^2]}{x^2y^2}=\frac{(-y)(2x+y)(-x)(2y+x)}{x^2y^2}\)

\(A=\frac{xy(2x+y)(2y+x)}{x^2y^2}=\frac{(2x+y)(2y+x)}{xy}=\frac{4xy+2x^2+2y^2+xy}{xy}\)

\(A=5+\frac{2(x^2+y^2)}{xy}=5+\frac{2(x-y)^2+4xy}{xy}=9+\frac{2(x-y)^2}{xy}\)

Thấy rằng \(x,y>0; (x-y)^2\geq 0\Rightarrow \frac{2(x-y)^2}{xy}\geq 0\)

\(\Rightarrow A\geq 9\) hay \(A_{\min}=9\)

Dấu bằng xảy ra khi \(x=y=1\)

24 tháng 3 2018

thakss

NV
14 tháng 4 2022

\(A=\dfrac{x^2+y^2}{xy}+\dfrac{2xy}{x^2+y^2}=\dfrac{x^2+y^2}{2xy}+\dfrac{x^2+y^2}{2xy}+\dfrac{2xy}{x^2+y^2}\)

\(A\ge\dfrac{2xy}{2xy}+2\sqrt{\left(\dfrac{x^2+y^2}{2xy}\right)\left(\dfrac{2xy}{x^2+y^2}\right)}=3\)

Dấu "=" xảy ra khi \(x=y\)

\(B=\dfrac{\left(x+y\right)^2-4xy}{xy}+\dfrac{4xy}{\left(x+y\right)^2}=\dfrac{\left(x+y\right)^2}{xy}+\dfrac{4xy}{\left(x+y\right)^2}-4\)

\(B=\dfrac{\left(x+y\right)^2}{4xy}+\dfrac{4xy}{\left(x+y\right)^2}+\dfrac{3}{4}.\dfrac{\left(x+y\right)^2}{xy}-4\)

\(B\ge2\sqrt{\dfrac{\left(x+y\right)^2.4xy}{4xy.\left(x+y\right)^2}}+\dfrac{3}{4}.\dfrac{4xy}{xy}-4=1\)

\(B_{min}=1\) khi \(x=y\)

18 tháng 3 2023

\(A=\dfrac{2\left(x^3+y^3\right)}{\left(x^4+y^2\right)\left(x^2+y^4\right)}=2.\dfrac{\left(x^3+y^3\right)}{x^4y^4+x^2y^2+x^6+y^6}\)

\(=2.\dfrac{\left(x^3+y^3\right)}{1+1+x^6+y^6}=2.\dfrac{x^3+y^3}{x^6+y^6+2x^3y^3}=2.\dfrac{x^3+y^3}{\left(x^3+y^3\right)^2}=\dfrac{2}{x^3+y^3}\left(1\right)\)

Áp dụng bất đẳng thức Cauchy ta có:

\(x^3+y^3+1\ge3\sqrt{xy.1}=3\)

\(\Rightarrow x^3+y^3\ge2\Rightarrow\dfrac{2}{x^3+y^3}\le1\left(2\right)\)

\(\left(1\right),\left(2\right)\Rightarrow A\le1\)

Dấu "=" xảy ra khi x=y=1.

Vậy MaxA là 1, đạt được khi x=y=1.

 

 

19 tháng 3 2023

Thanks!

16 tháng 3 2022

Theo bđt Cauchy schwarz dạng Engel 

\(P\ge\frac{\left(2x+2y+\frac{1}{x}+\frac{1}{y}\right)^2}{1+1}=\frac{\left[2\left(x+y\right)+\frac{1}{x}+\frac{1}{y}\right]^2}{2}\)

Ta có \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\)(bđt phụ) 

\(\Rightarrow P\ge\frac{\left[2.1+4\right]^2}{2}=\frac{36}{2}=18\)

Dấu ''='' xảy ra khi \(x=y=\frac{1}{2}\)

NV
16 tháng 3 2022

\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+\dfrac{1}{x}+2y+\dfrac{1}{y}\right)^2\ge\dfrac{1}{2}\left(2x+2y+\dfrac{4}{x+y}\right)^2=18\)

\(P_{min}=18\) khi \(x=y=\dfrac{1}{2}\)

AH
Akai Haruma
Giáo viên
13 tháng 3 2021

Thay $x=\sqrt{\frac{1}{2,5}}; y=z=\sqrt{\frac{1}{0,25}}$ ta thấy đề sai bạn nhé!

13 tháng 3 2021

Thầy ơi, nhưng câu này là đề thi huyện chỗ em á thầy, em cũng chả biết làm sao nữa, chả nhẽ đề thi huyện lại sai:"(

1 tháng 5 2017

Sửa đề:

\(P=\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\)

\(=4x^2+4+\dfrac{1}{x^2}+4y^2+4+\dfrac{1}{y^2}\)

\(=8+4\left(x^2+y^2\right)+\left(\dfrac{1}{x^2}+\dfrac{1}{y^2}\right)\)

\(\ge8+4.\dfrac{\left(x+y\right)^2}{2}+\dfrac{2}{xy}\)

\(\ge8+4.\dfrac{\left(x+y\right)^2}{2}+\dfrac{2}{\dfrac{\left(x+y\right)^2}{4}}\)

\(=8+4.\dfrac{1}{2}+\dfrac{2}{\dfrac{1}{4}}=18\)

Vậy GTNN là P = 18 đạt được khi \(x=y=\dfrac{1}{2}\)

1 tháng 5 2017

Hình như đầu bài sai hay sao ý đáng ra phải là

P = \(\left(2x+\dfrac{1}{x}\right)^2+\left(2y+\dfrac{1}{y}\right)^2\)

NV
10 tháng 1 2021

Bạn tham khảo:

Cho ba số thực dương x;y;z thoả mãn \(5\left(x y z\right)^2\ge14\left(x^2 y^2 z^2\right)\) Tìm giá trị lớn nhất nhỏ nh... - Hoc24

24 tháng 1 2021

\(\text{Khai triển ra ta được: }C=x^2y^2+2+\dfrac{1}{x^2y^2}\ge2\sqrt{\dfrac{x^2y^2}{x^2y^2}}+2=4\text{ Dấu "=" xảy ra khi: }x=\pm\dfrac{1}{y}\)

8 tháng 1 2021

Đặt \(\dfrac{x}{z}=a;\dfrac{y}{z}=b\).

Theo gt ta có \(a+b\le1\).

BĐT cần chứng minh tương đương:

\(a^2+b^2+\frac{a^2}{b^2}+\frac{b^2}{a^2}+\frac{1}{a^2}+\frac{1}{b^2}\ge \frac{21}{2}\).

Theo bđt AM - GM: \(\dfrac{a^2}{b^2}+\dfrac{b^2}{a^2}\ge2;a^2+\dfrac{1}{16}a^2\ge\dfrac{1}{2};b^2+\dfrac{1}{16}b^2\ge\dfrac{1}{2};\dfrac{15}{16}\left(\dfrac{1}{a^2}+\dfrac{1}{b^2}\right)\ge\dfrac{15}{32}\left(\dfrac{1}{a}+\dfrac{1}{b}\right)^2\ge\dfrac{15}{32}.\left(\dfrac{4}{a+b}\right)^2\ge\dfrac{15}{2}\).

Cộng vế với vế của các bđt trên lại ta có đpcm.