\(x^2-2xy+2y^2-2x-2y+5=0\)

tính giá trị...">

K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
26 tháng 4 2018

Lời giải:

Ta có:

\(x^2-2x+2y^2-2x-2y+5=0\)

\(\Leftrightarrow (x^2+y^2+1-2xy-2x+2y)+(y^2-4y+4)=0\)

\(\Leftrightarrow (x-y-1)^2+(y-2)^2=0(*)\)

Vì \((x-y-1)^2, (y-2)^2\geq 0, \forall x,y\in\mathbb{Z}\) nên $(*)$ xảy ra khi và chỉ khi:

\(\left\{\begin{matrix} (x-y-1)^2=0\\ (y-2)^2=0\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x-y-1=0\\ y=2\end{matrix}\right.\Leftrightarrow \left\{\begin{matrix} x=3\\ y=2\end{matrix}\right.\)

Do đó thay các giá trị cụ thể của $x,y$ vào biểu thức $P$ thì:

\(P=1\)

26 tháng 4 2018

Giải hay qs

8 tháng 1 2017

Có vẻ đề  đúng

\(P=\frac{3x^2y-1}{4xy}\)

\(\left(x^2+y^2+1^2-2xy-2x+2y\right)+\left(y^2+4y+4\right)=0\)

\(\left(x+y-1\right)^2+\left(y+2\right)^2=0\)

\(\hept{\begin{cases}x+y-1=0\\y+2=0\end{cases}\Rightarrow\hept{\begin{cases}x=3\\y=-2\end{cases}\Rightarrow}P=\frac{3.9.\left(-2\right)-1}{4.3.\left(-2\right)}=\frac{55}{24}}\)

8 tháng 1 2017

Cách giải đúng rồi nhưng sai hằng đảng thức nha bạn 
\(x^2+y^2+1-2xy-2x+2y=\left(y-x+1\right)^2\)

rồi sửa x= -1 là được

4 tháng 9 2019

đề bài bạn sai 

16 tháng 5 2019

\(2xy+2x-5z=0\Leftrightarrow z=\frac{2xy+2x}{5}\)

Sau đấy bn thay z vào là ra 

3 tháng 11 2020

Ta có: \(2xy+2x-5z=0\Rightarrow z=\frac{2xy+2x}{5}\)

Thay \(z=\frac{2xy+2x}{5}\)vào A, ta được: \(A=x^2+2y^2+2xy+\frac{8}{5}y+\frac{2xy+2x}{5}+2=x^2+2y^2+\frac{12}{5}xy+\frac{8}{5}y+\frac{2}{5}x+2\)\(=\left(x^2+\frac{12}{5}xy+\frac{36}{25}y^2\right)+\frac{2}{5}\left(x+\frac{6}{5}y\right)+\frac{1}{25}+\left(\frac{14}{25}y^2+\frac{28}{25}y+\frac{14}{25}\right)+\frac{7}{5}\)\(=\left[\left(x+\frac{6}{5}y\right)^2+\frac{2}{5}\left(x+\frac{6}{5}y\right)+\frac{1}{25}\right]+\frac{14}{25}\left(y+1\right)^2+\frac{7}{5}\)\(=\left(x+\frac{6}{5}y+\frac{1}{5}\right)^2+\frac{14}{25}\left(y+1\right)^2+\frac{7}{5}\ge\frac{7}{5}\)

Đẳng thức xảy ra khi \(\hept{\begin{cases}x+\frac{6}{5}y+\frac{1}{5}=0\\y+1=0\end{cases}}\Rightarrow\hept{\begin{cases}x=1\\y=-1\end{cases}}\Rightarrow z=0\)

\(2x^2+2y^2+z^2-2x+2y+2xy+2yz+2zx+2=0\)

\(\Leftrightarrow\)\(\left(x^2+2xy+y^2\right)+\left(y^2+2yz+z^2\right)+\left(x^2-2x+1\right)+\left(y^2+2y+1\right)=0\)

\(\Leftrightarrow\)\(\left(x+y\right)^2+\left(y+z\right)^2+\left(x-1\right)^2+\left(y+1\right)^2=0\)

\(\Leftrightarrow\)\(x=-y=z=1\)

\(\Rightarrow\)\(A=x^{2018}+y^{2018}+z^{2018}=1^{2018}+\left(-1\right)^{2018}+1^{2018}=3\)

... 

26 tháng 11 2018

\(x^2+2y^2-3xy=0\)

\(\Rightarrow x\left(x-y\right)-2y\left(x-y\right)=0\)

\(\Rightarrow\left(x-2y\right)\left(x-y\right)=0\Rightarrow\orbr{\begin{cases}x=2y\\x=y\end{cases}}\)

x = 2y thì \(A=\frac{2018.2y.y}{\left(2y\right)^2+2y^2}=\frac{4036y^2}{6y^2}=\frac{2018}{3}\)

x = y thì \(A=\frac{2018.y.y}{y^2+y^2}=\frac{2018y^2}{2y^2}=1009\)

Vậy \(\orbr{\begin{cases}A=\frac{2018}{3}\\A=1009\end{cases}}\)