Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
xy = 1 => \(\left(x+y\right)^2\ge4xy=4.1=4\Rightarrow x+y\ge2\)
Ta CM BĐT \(\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\) ( dễ dàng cm đc bằng cách xét hiệu )
\(\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\ge\frac{4}{x+y}+\frac{2}{x+y}=\frac{6}{x+y}\)\(=\frac{6}{2}=3\)
dấu bằng của BĐT xảy ra khi x = y = 1
Lời giải bạn Thắng bị sai.
Ta có \(\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}=\frac{x+y}{xy}+\frac{2}{x+y}=\left(x+y\right)+\frac{2}{x+y}=\frac{x+y}{2}+\left(\frac{x+y}{2}+\frac{2}{x+y}\right).\)
Theo bất đẳng thức Cô-Si \(\frac{x+y}{2}\ge\frac{2\sqrt{xy}}{2}=1,\) và \(\frac{x+y}{2}+\frac{2}{x+y}\ge2\sqrt{\frac{x+y}{2}\cdot\frac{2}{x+y}}=2.\) Suy ra
\(\frac{1}{x}+\frac{1}{y}+\frac{2}{x+y}\ge1+2=3.\)
Ta có : \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\ge xy\left(x+y\right)\)
\(\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)
\(\frac{\sqrt{1+x^3+y^3}}{xy}\ge\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Tương tự : \(\frac{\sqrt{1+y^3+z^3}}{yz}\ge\frac{\sqrt{3yz}}{yz}=\sqrt{\frac{3}{yz}}\); \(\frac{\sqrt{1+x^3+z^3}}{xz}\ge\frac{\sqrt{3xz}}{xz}=\sqrt{\frac{3}{xz}}\)
\(\Rightarrow A\ge\sqrt{3}\left(\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{xz}}\right)\ge3\sqrt{3}\sqrt{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)
Ta có: \(x^3+y^3\ge xy\left(x+y\right)\Rightarrow1+x^3+y^3\ge xyz+xy\left(x+y\right)\)
\(=xy\left(x+y+z\right)\ge3xy\sqrt[3]{xyz}=3xy\)(vì xyz = 1)
\(\Rightarrow\frac{\sqrt{1+x^3+y^3}}{xy}=\frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Tương tự ta có: \(\frac{\sqrt{1+y^3+z^3}}{yz}=\sqrt{\frac{3}{yz}}\);\(\frac{\sqrt{1+z^3+x^3}}{zx}=\sqrt{\frac{3}{zx}}\)
Cộng vế với vế, ta được:
\(BĐT=\sqrt{3}\left(\frac{1}{\sqrt{xy}}+\frac{1}{\sqrt{yz}}+\frac{1}{\sqrt{zx}}\right)\)
\(\ge3\sqrt{3}\sqrt[3]{\frac{1}{\sqrt{x^2y^2z^2}}}=3\sqrt{3}\)
(Dấu "="\(\Leftrightarrow x=y=z=1\))
Áp dung BĐT \(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{9}{a+b+c}\left(a,b,c>0\right)\)
\(=>x,y,z>0\left(taco\right)\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\ge\frac{9}{xy+yz+xz}\)
\(=>P\ge\frac{1}{x^2+y^2+z^2}+\frac{9}{xy+yz+xz}\)
\(=>P\ge\left(\frac{1}{x^2+y^2+z^2}+\frac{1}{xy+yz+zx}+\frac{1}{xy+yz+zx}\right)+\frac{7}{xy+yz+xz}\)
\(\ge\frac{9}{x^2+y^2+z^2+2xy+2yz+2zx}+\frac{7}{xy+yz+zx}\)
\(=\frac{9}{\left(x+y+z\right)^2}+\frac{7}{xy+yz+xz}\ge\frac{9}{\left(x+y+z\right)^2}+\frac{21}{\left(x+y+z\right)^2}\ge30\)
do \(3\left(xy+yz+zx\right)\le\left(x+y+z\right)^2and\left(x+y+z=1\right)\)
dấu = xảy ra khi x=y=z=1/3
zậy...........
1111111111111111111
\(VT=\Sigma\frac{xy+yz+zx}{xy}=3+\Sigma\frac{z\left(x+y\right)}{xy}\)
Đến đây để ý \(\frac{1}{2}\left[\frac{z\left(x+y\right)}{xy}+\frac{y\left(z+x\right)}{zx}\right]\ge\sqrt{\frac{\left(z+x\right)\left(x+y\right)}{x^2}}\left(\text{AM - GM}\right)\)
Là xong.
với 2 số dương a,b ta luôn có
\(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\):\(\left(a+b\right)^2\ge4ab\)
Áp dụng vào bài toán, ta có
\(\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{2}{2xy}\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\frac{2}{4xy}\ge\frac{4}{\left(x+y\right)^2}+\frac{2}{\left(x+y\right)^2}=6\)(vì x+y=1)
Ta có: x2+y2≤(x+y)2/2 => 1/(x2+y2)≥2/(x+y)2=2
xy≤(x+y)2/4 => 1/xy≥4/(x+y)2=4
=>1/(x2+y2)+1/xy≥2+4=6
Dấu "=" xảy ra khi x=y=1/2
Cho x,y,z>0 thỏa xy+yz+zx=1.Chứng minh rằng:
\(\Sigma\frac{1}{xy}\ge3+\Sigma\frac{\sqrt{x^2+1}}{x}\)
Ta có:
\(VT=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}=\frac{xy+yz+zx}{xy}+\frac{xy+yz+zx}{yz}+\frac{xy+yz+zx}{zx}\)
\(VT=3+\frac{z\left(x+y\right)}{xy}+\frac{x\left(y+z\right)}{yz}+\frac{y\left(x+z\right)}{zx}\) (1)
Mặt khác:
\(\frac{z\left(x+y\right)}{xy}+\frac{x\left(y+z\right)}{yz}\ge2\sqrt{\frac{zx\left(x+y\right)\left(y+z\right)}{xy^2z}}=2\sqrt{\frac{\left(x+y\right)\left(y+z\right)}{y^2}}=\frac{2\sqrt{y^2+xy+yz+zx}}{y}=\frac{2\sqrt{y^2+1}}{y}\)
Tương tự: \(\frac{z\left(x+y\right)}{xy}+\frac{y\left(x+z\right)}{zx}\ge\frac{2\sqrt{x^2+1}}{x}\) ; \(\frac{x\left(y+z\right)}{yz}+\frac{y\left(x+z\right)}{zx}\ge\frac{2\sqrt{z^2+1}}{z}\)
Cộng vế với vế:
\(\frac{z\left(x+y\right)}{xy}+\frac{x\left(y+z\right)}{yz}+\frac{y\left(x+z\right)}{xz}\ge\frac{\sqrt{x^2+1}}{x}+\frac{\sqrt{y^2+1}}{y}+\frac{\sqrt{z^2+1}}{z}\) (2)
Từ (1) và (2) suy ra đpcm
Dấu "=" xảy ra khi \(x=y=z=...\)
Áp dụng bất đẳng thức \(\frac{1}{a}+\frac{1}{b}\ge\frac{4}{a+b}\) được
\(VT\ge\frac{4}{\left(x+y\right)^2}\ge4\)
Dấu "=" xảy ra khi x = y = 1/2
Vậy ...........
Cũng ko hẳn là cách khác nhưng xem cho vui v :)
\(\frac{1}{x^2+xy}+\frac{1}{y^2+xy}=\frac{1}{x\left(x+y\right)}+\frac{1}{y\left(x+y\right)}\ge\frac{1}{x}+\frac{1}{y}\ge\frac{4}{x+y}\ge4\)
Dấu "=" xảy ra \(\Leftrightarrow\)\(x=y=\frac{1}{2}\)