Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Áp dụng BĐT AM-GM:
\(9=x+y+xy+1=(x+1)(y+1)\leq \left(\frac{x+y+2}{2}\right)^2\)
\(\Rightarrow 4\leq x+y\)
Tiếp tục áp dụng BĐT AM-GM:
\(x^3+4x\geq 4x^2; y^3+4y\geq 4y^2\)
\(\frac{x}{4}+\frac{1}{x}\geq 1; \frac{y}{4}+\frac{1}{y}\geq 1\)
\(\Rightarrow x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 5(x^2+y^2)+\frac{3}{4}(x+y)+2\)
Mà:
\(5(x^2+y^2)\geq 5.\frac{(x+y)^2}{2}\geq 5.\frac{4^2}{2}=40\)
\(\frac{3}{4}(x+y)\geq \frac{3}{4}.4=3\)
\(\Rightarrow A= x^3+y^3+x^2+y^2+5(x+y)+\frac{1}{x}+\frac{1}{y}\geq 40+3+2=45\)
Vậy \(A_{\min}=45\Leftrightarrow x=y=2\)
Bài 2:
\(B=\frac{a^2}{a-1}+\frac{2b^2}{b-1}+\frac{3c^2}{c-1}\)
\(B-24=\frac{a^2}{a-1}-4+\frac{2b^2}{b-1}-8+\frac{3c^2}{c-1}-12\)
\(=\frac{a^2-4a+4}{a-1}+\frac{2(b^2-4b+4)}{b-1}+\frac{3(c^2-4c+4)}{c-1}\)
\(=\frac{(a-2)^2}{a-1}+\frac{2(b-2)^2}{b-1}+\frac{3(c-2)^2}{c-1}\geq 0, \forall a,b,c>1\)
\(\Rightarrow B\geq 24\)
Vậy \(B_{\min}=24\Leftrightarrow a=b=c=2\)
2. Có : 1/x + 1/y + 1/z = 0
=> 1 + x/y + x/z = 0 => x/y + x/z = -1
Tương tự : y/x + y/z = -1 ; z/x + z/y = -1
=> x/y + x/z + y/x + y/z + z/x + z/y = -3
Lại có : 1/x+1/y+1/z = 0
<=> xy+yz+zx/xyz = 0
<=> xy+yz+zx = 0
Xét : 0 = (xy+yz+zx).(1/x^2+1/y^2+1/z^2)
= xy/z^2+xz/y^2+xy/z^2+x/y+y/x+y/z+z/y+z/x+x/z
= xy/z^2+xz/y^2+xy/z^2-3
=> xy/z^2+xz/y^2+xy/z^2 = 3
=> ĐPCM
Tk mk nha
Áp dụng BĐT Cô si ta có:
\(1=\left(a+b+c\right)^2\ge4a\left(b+c\right)\)
\(\Leftrightarrow b+c\ge4a\left(b+c\right)^2\)
Mà \(\left(b+c\right)^2\ge4bc\)
\(\Rightarrow b+c\ge4a.4bc=16abc\)
Câu 2: \(\left(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\right)^2=\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2+2\left(x^2+y^2+z^2\right)\)
\(=\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2+6\)
Áp dụng bất đẳng thức AM - GM ta có :
\(\left(\frac{xy}{z}\right)^2+\left(\frac{yz}{x}\right)^2+\left(\frac{xz}{y}\right)^2\ge3\sqrt[3]{\left(\frac{xy}{z}\right)^2\left(\frac{yz}{x}\right)^2\left(\frac{xy}{y}\right)^2}=3\sqrt[3]{\frac{\left(xyz\right)^4}{\left(xyz\right)^2}}=3\)\(\frac{xy}{z}+\frac{yz}{x}+\frac{xz}{y}\ge\sqrt{3+6}=3\left(dpcm\right)\)
tại sao lại suy ra đc \(3\sqrt[3]{\frac{\left(xyz\right)^4}{\left(xyz\right)^{^2}}}=3\) vậy cậu?
Ta có: \(\frac{x^2}{y+1}+\frac{\left(y+1\right)}{4}\ge2\sqrt{\frac{x^2}{y+1}.\frac{y+1}{4}}=x\)
Tương tự với phân thức kia.Ta có:
\(VT=\frac{x^2}{y+1}+\frac{y^2}{x+1}=\left(\frac{x^2}{y+1}+\frac{y+1}{4}\right)+\left(\frac{y^2}{x+1}+\frac{x+1}{4}\right)-\left(\frac{x+y+2}{4}\right)\) (Áp dụng cái BĐT bên trên vào,ta có:)
\(\ge x+y-\frac{x+y+2}{4}=\frac{3\left(x+y\right)-2}{4}\ge\frac{3.2.\sqrt{xy}-2}{4}=\frac{6-2}{4}=1^{\left(đpcm\right)}\)
Dấu "=" xảy ra khi x = y = 1
P/s: Đúng không ta?Em mới lớp 7 thôi ạ!
Trước hết ta sẽ chứng minh bổ đề phụ sau, với mọi a,b dương ta có:
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
Thật vậy biến đổi tương đương ta đưa về \(\left(a-b\right)^2\left(a^2+ab+b^2\right)=0\)
BĐT này luôn đúng, thế thì
\(2\left(a^4+b^4\right)\ge\left(a+b\right)\left(a^3+b^3\right)\)
\(\Rightarrow\left(a^4+b^4\right)\ge\frac{\left(a+b\right)\left(a^3+b^3\right)}{2}\)
\(\frac{a^4+b^4}{a^3+b^3}\ge\frac{a+b}{2}\)
Như vậy ta có:
\(\hept{\begin{cases}\frac{x^4+y^4}{x^3+y^3}\ge\frac{x+y}{2}\\\frac{y^4+z^4}{y^3+z^3}\ge\frac{y+z}{2}\\\frac{z^4+x^4}{z^3+x^3}\ge\frac{z+x}{2}\end{cases}}\)
\(\frac{x^4+y^4}{x^3+y^3}+\frac{y^4+z^4}{y^3+z^3}+\frac{z^4+x^4}{z^3+x^3}\ge\frac{x+y}{2}+\frac{y+z}{2}+\frac{z+x}{2}=1\)
Dấu '=' xảy ra khi x=y=z=1/3
Đặng Ngọc Quỳnh không cần a,b rồi suy ra x,y, quá lòng vòng
Bạn tham khảo cách làm tại đây
Câu hỏi của Pham Quoc Cuong - Toán lớp 8 - Học toán với OnlineMath
Ta có \(B=\frac{x^4}{x+xy}+\frac{y^4}{y+xy}\ge\frac{\left(x^2+y^2\right)^2}{x+y+2xy}\ge\frac{\left(x+y\right)^4}{4\left(x+y+2\right)}=\frac{a^4}{4\left(a+2\right)}\)
Ta có \(x+y\ge2\sqrt{xy}=2\Rightarrow a\ge2\)
Ta cần \(\frac{a^4}{4\left(a+2\right)}\ge1\Leftrightarrow a^4\ge4a+8\Leftrightarrow\frac{1}{2}a^4+\frac{1}{2}a^4\ge4a+8\)
Ta có\(\frac{1}{2}a^4\ge\frac{1}{2}.16=8;a^3\ge8\Rightarrow\frac{1}{2}a^4\ge4a\Rightarrow a^4\ge4a+8\)
=> B>=1
dấu = xảy ra <=> x=y=1
\(\frac{x^3}{y+1}+\frac{y+1}{4}+\frac{1}{2}\ge3\sqrt[3]{\frac{x^3\left(y+1\right)}{8\left(y+1\right)}}=\frac{3}{2}x\)
Tương tự: \(\frac{y^3}{x+1}+\frac{x+1}{4}+\frac{1}{2}\ge\frac{3}{2}y\)
Cộng vế với vế:
\(B+\frac{x+y+2}{4}+1\ge\frac{3}{2}\left(x+y\right)\)
\(\Rightarrow B\ge\frac{5}{4}\left(x+y\right)-\frac{3}{2}\ge\frac{5}{4}.2\sqrt{xy}-\frac{3}{2}=1\)
Dấu "=" xảy ra khi \(x=y=1\)