Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\)
\(=\left(\frac{1}{x^2+y^2}+\frac{1}{2xy}\right)+\left(4xy+\frac{1}{4xy}\right)+\frac{1}{4xy}\)
\(\ge\frac{4}{\left(x+y\right)^2}+2\sqrt{4xy.\frac{1}{4xy}}+\frac{1}{\left(x+y\right)^2}\)\(\ge4+2+1=7\)
Dấu = xảy ra khi \(x=y=\frac{1}{2}\)
Vậy \(\left(\frac{1}{x^2+y^2}+\frac{1}{xy}+4xy\right)_{Min}=7\Leftrightarrow x=y=\frac{1}{2}\)
à nhầm, bạn pham trung thanh làm đúng rồi đấy mọi người ủng hộ bạn ấy nha
Q=\(\left(1+\dfrac{a}{x}\right)\left(1+\dfrac{a}{y}\right)\left(1+\dfrac{a}{z}\right)\)
\(Q=\left(\dfrac{x+a}{x}\right)\left(\dfrac{y+a}{y}\right)\left(\dfrac{z+a}{z}\right)\)\
=\(\left(\dfrac{2x+y+z}{x}\right)\left(\dfrac{2y+x+z}{y}\right)\left(\dfrac{2z+x+y}{z}\right)\)
=\(\dfrac{\left(2x+y+z\right)\left(2y+x+z\right)\left(2z+x+y\right)}{xyz}\)
ÁP dụng BĐT cô si
\(2x+y+z=x+x+y+z\ge4\sqrt[4]{x^2yz}\)
\(2y+x+z=y+y+x+z\ge4\sqrt[4]{y^2xy}\)
\(2z+y+x=z+z+x+y\ge4\sqrt[4]{z^2xy}\)
=> Q\(\ge\dfrac{64.\sqrt[4]{x^4y^4z^4}}{xyz}=64\)
=> MinQ=64 khi x=y=z=a/3
Áp dụng AM-GM ta có \(\frac{1^2}{x}+\frac{1^2}{x}+\frac{1^2}{y}+\frac{1^2}{z}\ge\frac{\left(1+1+1+1\right)^2}{2x+y+z}\)
hay \(\frac{2}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{16}{2x+y+z}\)
Tương tự : \(\frac{2}{y}+\frac{1}{x}+\frac{1}{z}\ge\frac{16}{2y+x+z}\) ; \(\frac{2}{z}+\frac{1}{x}+\frac{1}{y}\ge\frac{16}{2z+x+y}\)
Cộng theo vế : \(4\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\ge16\left(\frac{1}{2x+y+z}+\frac{1}{2y+x+z}+\frac{1}{2z+x+y}\right)\)
\(\Leftrightarrow\)\(16\left(\frac{1}{2x+y+z}+\frac{1}{2y+x+z}+\frac{1}{2z+x+y}\right)\le16\)
\(\Leftrightarrow\frac{1}{2x+y+z}+\frac{1}{2y+x+z}+\frac{1}{2z+x+y}\le1\)
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=1\Leftrightarrow ab+bc+ca=abc\)
\(\frac{a^2}{a+bc}=\frac{a^3}{a^2+abc}=\frac{a^3}{a^2+ab+bc+ca}=\frac{a^3}{\left(a+b\right)\left(a+c\right)}\)
Cô si:
\(\frac{a^3}{\left(a+b\right)\left(a+c\right)}+\frac{a+b}{8}+\frac{a+b}{8}\ge3\sqrt[3]{\frac{a^3}{\left(a+b\right)\left(b+c\right)}.\frac{\left(a+b\right)}{8}.\frac{\left(b+c\right)}{8}}=\frac{3a}{4}\)
Tương tự với 2 cục còn lại, công theo vế:
\(VT+\frac{a+b+c}{2}\ge\frac{3}{4}\left(a+b+c\right)\)
\(\Rightarrow VT\ge\frac{a+b+c}{4}\text{ }\left(dpcm\right)\)