K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 1 2017

5 tháng 10 2019

Ta có: \(x=2-\sqrt{3}\)\(\Rightarrow2-x=\sqrt{3}\)\(\Rightarrow\left(2-x\right)^2=3\)\(\Rightarrow4-4x+x^2=3\)\(\Rightarrow x^2-4x+1=0\)

Lại có: \(B=x^5-3x^4-3x^3+6x^2-20x+2018\)

\(\Rightarrow B=x^5-4x^4+x^4+x^3-4x^3+5x^2+x^2+20x+5+2013\)

\(\Rightarrow B=\left(x^5-4x^4+x^3\right)+\left(x^4-4x^3+x^2\right)+\left(5x^2-20x+5\right)+2013\)

\(\Rightarrow B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2013\)

\(\Rightarrow B=x^3\cdot0+x^2\cdot0+5\cdot0+2013=2013\)

NV
13 tháng 12 2018

\(x+\sqrt{3}=2\Rightarrow\sqrt{3}=2-x\Rightarrow3=\left(2-x\right)^2\Rightarrow x^2-4x+1=0\)

Ta có:

\(B=x^5-4x^4+x^4-4x^3+x^3+5x^2+x^2-20x+5+2013\)

\(\Rightarrow B=x^5-4x^4+x^3+x^4-4x^3+x^2+5x^2-20x+5+2013\)

\(\Rightarrow B=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2013\)

\(\Rightarrow B=x^3.0+x^2.0+5.0+2013=2013\)

11 tháng 8 2019

\(x+\sqrt{3}=2\Leftrightarrow x-2=-\sqrt{3}\Leftrightarrow\left(x-2\right)^2=3\)

\(\Leftrightarrow x^2-4x+1=0\)

ta có : \(P=x^3\left(x^2-4x+1\right)+x^2\left(x^2-4x+1\right)+5\left(x^2-4x+1\right)+2013=2013\)

28 tháng 8 2018

sai đề ak

28 tháng 8 2018

k

14 tháng 6 2019

2x4 ,4 là mũ hay số vậy

16 tháng 6 2019

thôi không cần lm nx học xong rồi

a: \(\Leftrightarrow\left(-x+3\right)\left(x+6\right)=18\)

\(\Leftrightarrow-x^2-6x+3x+18-18=0\)

\(\Leftrightarrow-x\left(x+3\right)=0\)

=>x=0 hoặc x=-3

b: \(\Leftrightarrow x\left(3x^2+6x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\3x^2+6x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x^2+2x-\dfrac{4}{3}=0\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\\left(x+1\right)^2=\dfrac{7}{3}\end{matrix}\right.\Leftrightarrow x\in\left\{0;\dfrac{\sqrt{21}}{3}-1;\dfrac{-\sqrt{21}}{3}-1\right\}\)

c: =>x(3x-5)=0

=>x=0 hoặc x=5/3

d: =>(x-2)(x+2)=0

=>x=2 hoặc x=-2

22 tháng 8 2019

a, \(x^4-4x^3-6x^2-4x+1=0\)(*)

<=> \(x^4+4x^2+1-4x^3-4x+2x^2-12x^2=0\)

<=> \(\left(x^2-2x+1\right)^2=12x^2\)

<=>\(\left(x-1\right)^4=12x^2\) <=> \(\left[{}\begin{matrix}\left(x-1\right)^2=\sqrt{12}x\\\left(x-1\right)^2=-\sqrt{12}x\end{matrix}\right.\)<=> \(\left[{}\begin{matrix}x^2-2x+1-\sqrt{12}x=0\left(1\right)\\x^2-2x+1+\sqrt{12}x=0\left(2\right)\end{matrix}\right.\)

Giải (1) có: \(x^2-2x+1-\sqrt{12}x=0\)

<=> \(x^2-2x\left(1+\sqrt{3}\right)+\left(1+\sqrt{3}\right)^2-\left(1+\sqrt{3}\right)^2+1=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2-3-2\sqrt{3}=0\)

<=> \(\left(x-1-\sqrt{3}\right)^2=3+2\sqrt{3}\) <=> \(\left[{}\begin{matrix}x-1-\sqrt{3}=\sqrt{3+2\sqrt{3}}\\x-1-\sqrt{3}=-\sqrt{3+2\sqrt{3}}\end{matrix}\right.\) <=> \(\left[{}\begin{matrix}x=\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(ktm\right)\\x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\left(tm\right)\end{matrix}\right.\)

=> \(x=-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)

Giải (2) có: \(x^2-2x+1+\sqrt{12}x=0\)

<=> \(x^2-2x\left(1-\sqrt{3}\right)+\left(1-\sqrt{3}\right)^2-\left(1-\sqrt{3}\right)^2+1=0\)

<=> \(\left(x+\sqrt{3}-1\right)^2=3-2\sqrt{3}\) .Có VP<0 => PT (2) vô nghiệm

Vậy pt (*) có nghiệm x=\(-\sqrt{3+2\sqrt{3}}+\sqrt{3}+1\)