K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2019

Ta có:

\(P=\left(x-2\right)^2+\left(y-1\right)^2+\frac{\left(x-2\right)\left(4x-1\right)}{2x}+\frac{\left(x+y-3\right)\left(6x+6y-1\right)}{3\left(x+y\right)}+\frac{35}{6}\ge\frac{35}{6}\) (Sử dụng giả thiết)

Đẳng thức xảy ra khi x = 2; y = 1

18 tháng 8 2019

Trần Thanh Phương, Nguyễn Văn Đạt, ?Amanda?, svtkvtm,

Lightning Farron, Lê Thảo, Nguyễn Thị Diễm Quỳnh,

@Akai Haruma, @Nguyễn Việt Lâm

8 tháng 2 2019

\(A=\frac{\sqrt{x-1}}{x}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{z-3}}{z}\)

Áp dụng BĐT AM-GM ta có:

\(A\le\frac{1+x-1}{x}+\frac{2+y-2}{2y}+\frac{3+z-3}{3z}=1+\frac{1}{2}+\frac{1}{3}=\frac{11}{6}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=2\\\sqrt{z-3}=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=1\\y-2=2\\z-3=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)

Vậy \(A_{max}=\frac{11}{6}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)

8 tháng 2 2019

Xin lỗi bạn. Bài đó mk lm sai rồi.

Sửa:

Áp dụng BĐT AM-GM ta có:

\(A=\frac{1.\sqrt{x-1}}{x}+\frac{\sqrt{2}.\sqrt{y-2}}{\sqrt{2}.y}+\frac{\sqrt{3}.\sqrt{z-3}}{\sqrt{3}.z}\le\frac{\frac{1+x-1}{2}}{x}+\frac{\frac{2+y-2}{2}}{\sqrt{2}.y}+\frac{\frac{3+z-3}{2}}{\sqrt{3}.z}=\frac{1}{2}+\frac{1}{2.\sqrt{2}}+\frac{1}{2.\sqrt{3}}\)\(=\frac{\sqrt{6}+\sqrt{3}+\sqrt{2}}{2.\sqrt{6}}\)

Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\sqrt{x-1}=1\\\sqrt{y-2}=\sqrt{2}\\\sqrt{z-3}=\sqrt{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}x-1=1\\y-2=2\\z-3=3\end{cases}}\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)

Vậy \(A_{max}=\frac{\sqrt{6}+\sqrt{2}+\sqrt{3}}{2.\sqrt{6}}\)\(\Leftrightarrow\hept{\begin{cases}x=2\\y=4\\z=6\end{cases}}\)

AH
Akai Haruma
Giáo viên
8 tháng 5 2020

Dấu "=" xảy ra khi $x=2; y=1$ nhé.

AH
Akai Haruma
Giáo viên
8 tháng 5 2020

Lời giải:
Áp dụng BĐT Cauchy-Schwarz:

$(x^2+y^2)(2^2+1)\geq (2x+y)^2\Rightarrow x^2+y^2\geq \frac{(2x+y)^2}{5}$

$\Rightarrow T\geq \frac{(2x+y)^2}{5}+\frac{2x+y}{x(x+y)}$

$=(2x+y)\left(\frac{2x+y}{5}+\frac{1}{x(x+y)}\right)$

Vì $x\geq 2; x+y\geq 3\Rightarrow 2x+y\geq 5(1)$

Áp dụng BĐT AM-GM:

$\frac{2x+y}{5}+\frac{1}{x(x+y)}=\frac{x}{12}+\frac{x+y}{18}+\frac{1}{x(x+y)}+\frac{7}{60}x+\frac{13}{90}(x+y)$

$\geq 3\sqrt[3]{\frac{x}{12}.\frac{x+y}{18}.\frac{1}{x(x+y)}}+\frac{7}{60}.2+\frac{13}{90}.3=\frac{7}{6}(2)$

Từ $(1);(2)\Rightarrow P\geq 5.\frac{7}{6}=\frac{35}{6}$

17 tháng 8 2019

\(\frac{xy\sqrt{z-1}+xz\sqrt{y-2}+yz\sqrt{x-3}}{xyz}\\ =\frac{xy\sqrt{z-1}}{xyz}+\frac{xz\sqrt{y-2}}{xyz}+\frac{yz\sqrt{x-3}}{xyz}\\ =\frac{\sqrt{z-1}}{z}+\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\\ =\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\)

Áp dụng BDT Cô-si với 2 số không âm:

\(\Rightarrow\frac{2\sqrt{z-1}}{2z}+\frac{2\sqrt{2}\sqrt{y-2}}{2\sqrt{2}y}+\frac{2\sqrt{3}\sqrt{x-3}}{2\sqrt{3}x}\\ \le\frac{1+\left(z-1\right)}{2z}+\frac{2+\left(y-2\right)}{2\sqrt{2}y}+\frac{3+\left(x-3\right)}{2\sqrt{3}x}\\ =\frac{1}{2}+\frac{1}{2\sqrt{2}}+\frac{1}{2\sqrt{3}}=\frac{1}{2}+\frac{\sqrt{2}}{4}+\frac{\sqrt{3}}{6}\)

Dấu "=" xảy ra \(\Leftrightarrow\left\{{}\begin{matrix}z-1=1\\y-2=2\\x-3=3\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}z=2\\y=4\\x=6\end{matrix}\right.\)

Vậy.......

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

20 tháng 9 2018

Ta có:

A=\(\frac{x\sqrt{y-2}+y\sqrt{x-3}}{xy}\)

\(=\frac{\sqrt{y-2}}{y}+\frac{\sqrt{x-3}}{x}\)

Do \(x\ge3;y\ge2\)nen 

\(\frac{\sqrt{y-2}}{y}\ge0;\frac{\sqrt{x-3}}{x}\ge0\)

\(\Rightarrow A\ge0\)

Dau "=" xảy ra khi y=2 ; x=3

Vay minA =0 khi x=3; y=2