Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=x^2-3x+\dfrac{1}{2x}+\dfrac{7}{4}+\dfrac{1}{4}\)
\(P=\dfrac{4x^3-12x^2+7x+2}{4x}+\dfrac{1}{4}=\dfrac{\left(x-2\right)\left(4x^2-4x-1\right)}{4x}+\dfrac{1}{4}\)
\(P=\dfrac{\left(x-2\right)\left[4x\left(x-2\right)+\dfrac{1}{2}\left(x-2\right)+\dfrac{7x}{2}\right]}{4x}+\dfrac{1}{4}\ge\dfrac{1}{4}\)
\(P_{min}=\dfrac{1}{4}\) khi \(x=2\)
\(P=x^2-3x+\dfrac{1}{2x}+2\)
\(P=x^2-4x+4+x+\dfrac{4}{x}-\dfrac{7}{2x}-2\)
\(P=\left(x-2\right)^2+x+\dfrac{4}{x}-\dfrac{7}{2x}-2\)
Áp dụng bđt cosi và bđt x \(\ge\)2
Ta có: P \(\ge0+2\sqrt{x\cdot\dfrac{4}{x}}-\dfrac{7}{2.2}-2=\dfrac{1}{4}\)
Dấu "=" xảy ra <=> x = 2
Vậy MinP = 1/4 <=> x = 2
d. Áp dụng BĐT Caushy Schwartz ta có:
\(x+y+\dfrac{1}{x}+\dfrac{1}{y}\le x+y+\dfrac{\left(1+1\right)^2}{x+y}=x+y+\dfrac{4}{x+y}\le1+\dfrac{4}{1}=5\)
-Dấu bằng xảy ra \(\Leftrightarrow x=y=\dfrac{1}{2}\)
\(x^2+\left(s-3x\right)^2-5x-15\left(s-3x\right)+8\le0\)
\(S=3x+y\Leftrightarrow y=S-3x\)
\(10x^2-2\left(3x-20\right)x+s^2-15s+8\le0\left(1\right)\)
Tìm đk S để có BPT (1) có nghiệm
Ta có:
\(\left(3s-20\right)^2-10s^2+150s-80\ge0\)
\(s^2-30s-320\le0\)
\(15-\sqrt{545}\le s\le15+\sqrt{545}\)
Vậy MinS = \(15-\sqrt{545}\)
Bạn xem lại ĐKĐB. Nếu $x\geq \frac{-1}{3}$ thì mình nghi ngờ $\sqrt{3x-1}$ của bạn viết là $\sqrt{3x+1}$Còn nếu đúng là $\sqrt{3x-1}$ thì ĐK cần là $x\geq \frac{1}{3}$.
a) Ta có: \(A=x^2-5x+7\)
\(=x^2-2\cdot x\cdot\dfrac{5}{2}+\dfrac{25}{4}+\dfrac{3}{4}\)
\(=\left(x-\dfrac{5}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{5}{2}\)
b) Ta có: \(B=2x^2-8x+15\)
\(=2\left(x^2-4x+\dfrac{15}{2}\right)\)
\(=2\left(x^2-4x+4+\dfrac{7}{2}\right)\)
\(=2\left(x-2\right)^2+7\ge7\forall x\)
Dấu '=' xảy ra khi x=2
a. `A=x^2-5x+7`
`=x^2-2.x. 5/2 + (5/2)^2 +3/4`
`=(x-5/2)^2 + 3/4`
`=> A_(min) =3/4 <=> x-5/2 =0<=>x=5/2`
b) `B=2x^2-8x+15`
`=[(\sqrt2x)^2 -2.\sqrt2 x . 2\sqrt2 +(2\sqrt2)^2] +7`
`=(\sqrt2x-2\sqrt2)^2+7`
`=> B_(min)=7 <=> x=2`.
Ta có: \(P=x^2-3x+\frac{1}{2x}+2=\left(x-2\right)^2+\left(\frac{x}{8}+\frac{1}{2x}\right)+\frac{7x}{8}-2\ge\frac{1}{4}\)
Đẳng thức xảy ra khi x = 2
Do \(x\ge2\),đặt \(x=2+m\left(m\ge0\right)\)
Ta có: \(S=5x^2-2x=5\left(2+m\right)^2-2\left(2+m\right)\)
\(=\left(2+m\right)\left[5\left(2+m\right)-2\right]\)
\(=\left(2+m\right)\left[10+5m-2\right]\)
\(\ge2\left(10-2\right)=16\) (do \(m\ge0\))
Dấu "=" xảy ra khi \(m=0\Leftrightarrow x=2\)
Vậy \(S_{min}=16\Leftrightarrow x=2\)