K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2016

http://olm.vn/hoi-dap/question/369649.html

8 tháng 1 2016

\(M=\left(9x^3-9x^2-3\right)^2\)

Hình như tính cái này 

8 tháng 1 2016

Đặt \(a=\sqrt[3]{\frac{12+\sqrt{135}}{3}}+\sqrt[3]{\frac{12-\sqrt{135}}{3}}\)
\(\Rightarrow a^3=\left(\sqrt[3]{4+\sqrt{15}}+\sqrt[3]{4-\sqrt{15}}\right)^3\)
Có (a+b)^3=a^3+b^3+3ab(a+b)
\(\Rightarrow a^3=4+\sqrt{15}+4-\sqrt{15}+3\sqrt[3]{\left(4+\sqrt{15}\right)\left(4-\sqrt{15}\right)}a\)
\(\Rightarrow a^3=8+3a\Rightarrow a^3-3a-8=0\)-> khó
 

20 tháng 7 2020

Từ \(x=\frac{1}{3}\left(1+\sqrt[3]{\frac{12+\sqrt{135}}{3}}+\sqrt[3]{\frac{12-\sqrt{135}}{3}}\right)\)

\(\Rightarrow3x-1=\left(\sqrt[3]{\frac{12+\sqrt{135}}{3}}+\sqrt[3]{\frac{12-\sqrt{135}}{3}}\right)\)

\(\Leftrightarrow\left(3x-1\right)^3=\left(\sqrt[3]{\frac{12+\sqrt{135}}{3}}+\sqrt[3]{\frac{12-\sqrt{135}}{3}}\right)^3\)

\(\Rightarrow\left(3x-1\right)^3=8+3\left(3x+1\right)\)

\(\Leftrightarrow9x^3-9x^2-2=0\)

\(\Rightarrow M=-1\)

NV
31 tháng 1 2019

Do \(12=\sqrt{144}>\sqrt{135}\) nên \(x>0\)

Đặt \(a=\sqrt[3]{\dfrac{12+\sqrt{135}}{3}}+\sqrt[3]{\dfrac{12-\sqrt{135}}{3}}\) \(\Rightarrow x=\dfrac{1}{3}\left(a+1\right)\)

\(a^3=8+3\left(\sqrt[3]{\dfrac{12+\sqrt{135}}{3}}+\sqrt[3]{\dfrac{12-\sqrt{135}}{3}}\right)=8+3a\)

Ta có: \(x=\dfrac{1}{3}\left(a+1\right)\Rightarrow3x=a+1\Rightarrow9x^2=a^2+2a+1\)

Lại có: \(x^3=\dfrac{1}{27}\left(a+1\right)^3\Leftrightarrow9x^3=\dfrac{1}{3}\left(a^3+3a^2+3a+1\right)\)

\(\Leftrightarrow9x^3=\dfrac{1}{3}\left(8+3a+3a^2+3a+1\right)=a^2+2a+3\)

\(\Rightarrow M=\left(a^2+2a+3-a^2-2a-1-3\right)^2=\left(-1\right)^2=1\)

NV
28 tháng 12 2018

Đặt \(a=\sqrt[3]{\dfrac{12+\sqrt{135}}{3}}+\sqrt[3]{\dfrac{12-\sqrt{135}}{3}}\) \(\Rightarrow x=\dfrac{1}{3}\left(a+1\right)\)

\(\Rightarrow3x=a+1\Rightarrow9x^2=a^2+2a+1\) (1)

\(x^3=\dfrac{1}{27}\left(a+1\right)^3=\dfrac{1}{27}\left(a^3+3a^2+3a+1\right)\)

Ta có:

\(a^3=\left(\sqrt[3]{\dfrac{12+\sqrt{135}}{3}}+\sqrt[3]{\dfrac{12-\sqrt{135}}{3}}\right)^3\)

\(\Rightarrow a^3=\dfrac{24}{3}+3\sqrt[3]{\dfrac{\left(12+\sqrt{135}\right)\left(12-\sqrt{135}\right)}{9}}.\left(\sqrt[3]{\dfrac{12+\sqrt{135}}{3}}+\sqrt[3]{\dfrac{12-\sqrt{135}}{3}}\right)\)

\(\Rightarrow a^3=8+3a\)

\(\Rightarrow x^3=\dfrac{1}{27}\left(8+3a+3a^2+3a+1\right)=\dfrac{1}{9}\left(a^2+2a+3\right)\)

\(\Rightarrow9x^3=a^2+2a+3\) (2)

Thay (1), (2) vào M ta được:

\(M=\left(9x^3-9x^2-3\right)^2=\left(a^2+2a+3-\left(a^2+2a+1\right)-3\right)^2\)

\(\Rightarrow M=\left(-1\right)^2=1\)

19 tháng 10 2020

ghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghghgh

by

duc

9 tháng 5 2019

\(A=\left(\frac{\sqrt{x}-1}{3\sqrt{x}-1}-\frac{1}{3\sqrt{x}+1}+\frac{8\sqrt{x}}{9x-1}\right):\left(1-\frac{3\sqrt{x}-2}{3\sqrt{x}+1}\right)=\left[\frac{\left(\sqrt{x}-1\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}-\frac{3\sqrt{x}-1}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}+\frac{8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}\right]:\frac{3\sqrt{x}+1-3\sqrt{x}+2}{3\sqrt{x}+1}=\frac{3x+\sqrt{x}-3\sqrt{x}-1-3\sqrt{x}+1+8\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}:\frac{3}{3\sqrt{x}+1}=\frac{3x+3\sqrt{x}}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right)}.\frac{3\sqrt{x}+1}{3}=\frac{3\left(x+\sqrt{x}\right)\left(3\sqrt{x}+1\right)}{\left(3\sqrt{x}+1\right)\left(3\sqrt{x}-1\right).3}=\frac{x+\sqrt{x}}{3\sqrt{x}-1}\)