Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x = 0,7320508076
Thay x vào B ta được: ( x6 + 3x5 - 2x3 + x2 - 1 )2018
=0
Hk tốt
a)đk:`2x-4>=0`
`<=>2x>=4`
`<=>x>=2.`
b)đk:`3/(-2x+1)>=0`
Mà `3>0`
`=>-2x+1>=0`
`<=>1>=2x`
`<=>x<=1/2`
c)`đk:(-3x+5)/(-4)>=0`
`<=>(3x-5)/4>=0`
`<=>3x-5>=0`
`<=>3x>=5`
`<=>x>=5/3`
d)`đk:-5(-2x+6)>=0`
`<=>-2x+6<=0`
`<=>2x-6>=0`
`<=>2x>=6`
`<=>x>=3`
e)`đk:(x^2+2)(x-3)>=0`
Mà `x^2+2>=2>0`
`<=>x-3>=0`
`<=>x>=3`
f)`đk:(x^2+5)/(-x+2)>=0`
Mà `x^2+5>=5>0`
`<=>-x+2>0`
`<=>-x>=-2`
`<=>x<=2`
a, ĐKXĐ : \(2x-4\ge0\)
\(\Leftrightarrow x\ge\dfrac{4}{2}=2\)
Vậy ..
b, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{3}{-2x+1}\ge0\\-2x+1\ne0\end{matrix}\right.\)
\(\Leftrightarrow-2x+1>0\)
\(\Leftrightarrow x< \dfrac{1}{2}\)
Vậy ..
c, ĐKXĐ : \(\dfrac{-3x+5}{-4}\ge0\)
\(\Leftrightarrow-3x+5\le0\)
\(\Leftrightarrow x\ge\dfrac{5}{3}\)
Vậy ...
d, ĐKXĐ : \(-5\left(-2x+6\right)\ge0\)
\(\Leftrightarrow-2x+6\le0\)
\(\Leftrightarrow x\ge-\dfrac{6}{-2}=3\)
Vậy ...
e, ĐKXĐ : \(\left(x^2+2\right)\left(x-3\right)\ge0\)
\(\Leftrightarrow x-3\ge0\)
\(\Leftrightarrow x\ge3\)
Vậy ...
f, ĐKXĐ : \(\left\{{}\begin{matrix}\dfrac{x^2+5}{-x+2}\ge0\\-x+2\ne0\end{matrix}\right.\)
\(\Leftrightarrow-x+2>0\)
\(\Leftrightarrow x< 2\)
Vậy ...
2: ĐKXĐ: x>=0
\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)
=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)
=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)
=>\(-2\sqrt{3x}=-4\)
=>\(\sqrt{3x}=2\)
=>3x=4
=>\(x=\dfrac{4}{3}\left(nhận\right)\)
3:
ĐKXĐ: x>=0
\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)
=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)
=>\(13\sqrt{2x}=20+3\sqrt{2}\)
=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)
=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)
=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)
4: ĐKXĐ: x>=-1
\(\sqrt{16x+16}-\sqrt{9x+9}=1\)
=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)
=>\(\sqrt{x+1}=1\)
=>x+1=1
=>x=0(nhận)
5: ĐKXĐ: x<=1/3
\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)
=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)
=>\(5\sqrt{1-3x}=10\)
=>\(\sqrt{1-3x}=2\)
=>1-3x=4
=>3x=1-4=-3
=>x=-3/3=-1(nhận)
6: ĐKXĐ: x>=3
\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)
=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)
=>x-3=16
=>x=19(nhận)
a) \(\sqrt{2x-1}=3\left(đk:x\ge\dfrac{1}{2}\right)\)
\(\Leftrightarrow2x-1=9\Leftrightarrow2x=10\Leftrightarrow x=5\)(thỏa đk)
b) \(\sqrt{1-3x}=\dfrac{1}{2}\left(đk:x\le\dfrac{1}{3}\right)\)
\(\Leftrightarrow1-3x=\dfrac{1}{4}\Leftrightarrow3x=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{4}\)(thỏa đk)
c) \(\sqrt{\left(x-1\right)^2}=\dfrac{1}{2}\)
\(\Leftrightarrow\left|x-1\right|=\dfrac{1}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}x-1=\dfrac{1}{2}\\x-1=-\dfrac{1}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=\dfrac{1}{2}\end{matrix}\right.\)
d) \(\sqrt{\left(1+2x\right)^2}=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left|1+2x\right|=\dfrac{\sqrt{3}}{2}\)
\(\Leftrightarrow\left[{}\begin{matrix}1+2x=\dfrac{\sqrt{3}}{2}\\1+2x=-\dfrac{\sqrt{3}}{2}\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{-2+\sqrt{3}}{4}\\x=-\dfrac{2+\sqrt{3}}{4}\end{matrix}\right.\)
e) \(\sqrt{\left(1-2x\right)^2}=\left|x-1\right|\)
\(\Leftrightarrow\left|1-2x\right|=\left|x-1\right|\)
\(\Leftrightarrow\left[{}\begin{matrix}1-2x=x-1\\1-2x=1-x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{3}{2}\\x=0\end{matrix}\right.\)
1: ĐKXĐ: 2-3x>=0
=>x<=2/3
2: ĐKXĐ: -3x^2>=0
=>x^2<=0
=>x=0
3: ĐKXĐ: -2023x^3>=0
=>x^3<=0
=>x<=0
4: ĐKXĐ: -2(x-5)>=0
=>x-5<=0
=>x<=5
5: ĐKXĐ: -5/2-2x>=0
=>2-2x<0
=>2x>2
=>x>1
6: ĐKXĐ: (x^2+1)(3-2x)>=0
=>3-2x>=0
=>-2x>=-3
=>x<=3/2
7: ĐKXĐ: (-x^2-1)(3-x)>=0
=>(x^2+1)(x-3)>=0
=>x-3>=0
=>x>=3
\(x=\dfrac{\sqrt{28-16\sqrt{3}}}{\sqrt{3}-1}=\dfrac{\sqrt{4}\sqrt{7-4\sqrt{3}}}{\sqrt{3}-1}\)
\(=\dfrac{2\sqrt{4-4\sqrt{3}+3}}{\sqrt{3}-1}=\dfrac{2\sqrt{\left(2-\sqrt{3}\right)^2}}{\sqrt{3}-1}\)
\(=\dfrac{2\left(2-\sqrt{3}\right)}{\sqrt{3}-1}=\dfrac{4-2\sqrt{3}}{\sqrt{3}-1}=\dfrac{3-2\sqrt{3}+1}{\sqrt{3}-1}\)
\(=\dfrac{\left(\sqrt{3}-1\right)^2}{\sqrt{3}-1}=\sqrt{3}-1\)
B=(x6+3x5-2x3+x2+2x-1)2018=(x6+x5+2x5+2x4-2x4-2x3+x2+2x+1-2)2018
=[(x+1)x5+2x4(x+1)-2x3(x+1)+(x+1)2-2]2018
mà ta có : x+1=\(\sqrt{3}-1+1=\sqrt{3}\)
=> B=\(\left[\sqrt{3}\left(x^5+2x^4-2x^3\right)+(\sqrt{3})^2-2\right]^{2018}\)
Ta có : x5+2x4-2x3=x3(x2+2x+1-3)=x3[(x-1)2 -3]=x3(3-3)=0
=>B=\(\left[\sqrt{3}.0+3-2\right]^{2018}=1^{2018}=1\)
Vậy .....