K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 8 2018

\(x^{672}+y^{672}\) = 6,912 và \(x^{1344}+y^{1344}\) = 33,76244

1 tháng 8 2018

Ta có:

\(x^{672}+y^{672}=6,912\)

\(\Leftrightarrow\left(x^{672}+y^{672}\right)^2=6,912^2\)

\(\Leftrightarrow x^{1344}+y^{1344}+2x^{672}y^{672}=6,912^2\)

\(\Leftrightarrow33,76244+2x^{672}y^{672}=6,912^2\)

\(\Leftrightarrow x^{672}y^{672}=7,006652\)

Ta có:

\(\left\{{}\begin{matrix}x^{672}+y^{672}=6,912\\x^{1344}+y^{1344}=33,76244\end{matrix}\right.\)

\(\Rightarrow\left(x^{672}+y^{672}\right)\left(x^{1344}+y^{1344}\right)=6,912.33,76244\)

\(\Leftrightarrow x^{2016}+y^{2016}+x^{672}y^{1344}+y^{672}x^{1344}=233,36598528\)

\(\Leftrightarrow x^{2016}+y^{2016}+x^{672}y^{672}\left(x^{672}+y^{672}\right)=233,36598528\)

\(\Leftrightarrow x^{2016}+y^{2016}+48,429978624=233,36598528\)

\(\Leftrightarrow x^{2016}+y^{2016}=184,936006656\)

15 tháng 7 2016

Ta có : \(\left(x^{1000}+y^{1000}\right)=6,912\Rightarrow x^{2000}+y^{2000}+2\left(xy\right)^{1000}=6,912^2\Leftrightarrow\left(xy\right)^{1000}=\frac{6,912^2-33,76244}{2}\)

Lại có : \(x^{3000}+y^{3000}=\left(x^{1000}+y^{1000}\right)^3-3\left(xy\right)^{1000}\left(x^{1000}+y^{1000}\right)\)

\(=6,912^3-3.\frac{6,912^2-33,76244}{2}.6,912\)

Đến đây bạn bấm máy tính nha ^^ Đề thi CASIO đúng không?

16 tháng 7 2016

ukm. Cám ơn bạn

9 tháng 10 2016

Đặt a = x1000  , b = y1000. Theo bài ra ta có : a + b = 6,912 và a2 + b2 = 33,76244

       => x3000 + y3000 =   a3 + b3 = ( a+b)3 – 3ab ( a + b)

                mà:  3ab = 3\(\frac{3\left(a+b\right)^2-\left(a^2+b^2\right)}{2}\)

=>  a3 + b3 = (a +b)3 – 3 \(\frac{3\left(a+b\right)^2-\left(a^2+b^2\right)}{2}\left(a+b\right)\)

=> Thay số tính trên máy ta được: x3000 + y300= 184,9360067

9 tháng 10 2016

bạn ơi phần mà mình chưa hiểu

27 tháng 11 2016

Đặt \(\hept{\begin{cases}x^{1000}=a\\y^{1000}=b\end{cases}}\)

Thì ta có

\(\hept{\begin{cases}a+b=6,912\\a^2+b^2=33,76244\end{cases}}\)

Ta có (a + b)2 = a2 + b2 + 2ab = 6,9122

Từ đây suy ra được ab có ab từ đây đễ đàng suy ra được

a3 + b3 = (a + b)(a2 - ab + b2

28 tháng 7 2017

Đặt \(a=x^{1000},b=y^{1000}\)
\(\Rightarrow a+b=6,912\)\(a^2+b^2=33,76244.\)
Ta có \(\text{a+b= 6,912}\)
\(\Rightarrow\) \(\left(a+b\right)^2=6,912^2\)
\(\Leftrightarrow \)\(a^2+2ab+b^2=47,775744\)
\(\Leftrightarrow ab=\frac{47,775744-30,76244}{2}\)
\(\Leftrightarrow ab=8,506052\)
\(\Leftrightarrow ab(a+b)=58,797978624\)
Ta lại có \(a^3+b^3+ab(a+b)=(a+b)(a^2+b^2)\)
\(\Leftrightarrow \)\(a^3+b^3=174,5680067\)
Vậy \(x^{3000}+y^{3000}=174,5680067\)

14 tháng 10 2016

\(\left(x+\sqrt{x^2+2016}\right)\left(y+\sqrt{y^2+2016}\right)=2016\)

Nhân cả hai vế của đẳng thức trên với \(\sqrt{x^2+2016}-x\ne0\)được : 

\(2016\left(y+\sqrt{y^2+2016}\right)=2016\left(\sqrt{x^2+2016}-x\right)\)(1)

Tương tự nhân cả hai vế của đẳng thức ban đầu với \(\sqrt{y^2+2016}-y\ne0\)được ; 

\(2016\left(\sqrt{x^2+2016}+x\right)=2016\left(\sqrt{y^2+2016}-y\right)\)(2)

Cộng (1) và (2) theo vế : \(2016\left(x+y\right)+2016\left(\sqrt{y^2+2016}+\sqrt{x^2+2016}\right)=-2016\left(x+y\right)+2016\left(\sqrt{y^2+2016}+\sqrt{x^2+2016}\right)\)

\(\Rightarrow4032\left(x+y\right)=0\Rightarrow x+y=0\)

17 tháng 12 2016

Có :\(\frac{1}{x}+\frac{1}{y}=\frac{1}{2016}\Rightarrow2016=\frac{xy}{x+y}\)

Do Đó :P =\(\frac{\sqrt{x+y}}{\sqrt{x-2016}+\sqrt{y-2016}}\)

\(\Leftrightarrow\)P =\(\frac{\sqrt{x+y}}{\sqrt{x-\frac{xy}{x+y}}+\sqrt{y-\frac{xy}{x+y}}}\)

\(\Leftrightarrow P=\frac{\sqrt{x+y}}{\sqrt{\frac{x^2+xy-xy}{x+y}}+\sqrt{\frac{y^2+xy-xy}{x+y}}}\)

\(\Leftrightarrow\)P =\(\frac{\sqrt{x+y}}{\sqrt{\frac{x^2}{x+y}}+\sqrt{\frac{y^2}{x+y}}}\)

\(\Leftrightarrow P=\frac{\sqrt{x+y}}{\frac{x}{\sqrt{x+y}}+\frac{y}{\sqrt{x+y}}}\)   (vì x;y dương )

\(\Leftrightarrow P=\frac{\sqrt{x+y}}{\frac{x+y}{\sqrt{x+y}}}\)\(\Leftrightarrow P=\frac{\sqrt{x+y}}{\sqrt{x+y}}\)

\(\Leftrightarrow P=1\)

29 tháng 1 2016

??? sqrt là j

29 tháng 1 2016

bn ơi sqrt là j vậy

7 tháng 8 2019

tương tự như bài này nhé

https://diendantoanhoc.net/topic/121539-1cho-xsqrty21ysqrtx211-tinh-axsqrtx21ysqrty21/

8 tháng 8 2019

cảm ơn bn nhưng bài này là dạng khác