K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2023

Phân tích vế trái ta được: 2(x2 + y2 + z2 − (xy + yz + zx)

Phân tích vế phải ta được6(x2 + y2 + z2 − (xy + yz + zx)

VT = VP nên VP - VT=0

 4(x2 + y2 + z2 − (xy + yz + zx)) = 0

2(2 (x2 + y2 + z2 − (xy + yz + zx))) = 0

→2((x − y)2 + (y − z)2 + (z − x)2) = 0

→(x − y)2 + (y − z)2 + (z − x)2 = 0

→(x − y)2 = 0; (y − z)2 = 0; (z − x)2 = 0

→x = y = z

22 tháng 3 2020

\(\left(\frac{2x+2y-z}{3}\right)^2+\left(\frac{2y+2z-x}{3}\right)^2+\left(\frac{2z+2x-y}{3}\right)^2\\ =\frac{4x^2+4y^2+z^2+8xy-4xz-4yz}{9}+\frac{4y^2+4z^2+x^2+8yz-4xy-4xz}{9}+\frac{4z^2+4x^2+y^2+8xz-4yz-4xy}{9}\\ =\frac{9x^2+9y^2+9z^2}{9}=x^2+y^2+z^2\)

22 tháng 3 2020

- Ta có : \(\left(\frac{2x+2y-z}{3}\right)^2+\left(\frac{2y+2z-x}{3}\right)^2+\left(\frac{2x+2z-y}{3}\right)^2\)

\(=\frac{\left(2x+2y-z\right)^2}{9}+\frac{\left(2y+2z-x\right)^2}{9}+\frac{\left(2x+2z-y\right)^2}{9}\)

\(=\frac{\left(2x+2y-z\right)^2+\left(2y+2z-x\right)^2+\left(2x+2z-y\right)^2}{9}\)

\(=\frac{4x^2+4y^2+z^2+8xy-4yz-4xz+4y^2+4z^2+x^2+8yz-4xy-4xz+4x^2+4z^2+y^2+8xz-4xy-4yz}{9}\)

\(=\frac{9x^2+9y^2+9z^2}{9}=\frac{9\left(x^2+y^2+z^2\right)}{9}=x^2+y^2+z^2\)

\(\left(\dfrac{2x+2y-z}{3}\right)^2+\left(\dfrac{2y+2z-x}{3}\right)^2+\left(\dfrac{2z+2x-y}{3}\right)^2\)

\(=\dfrac{4y^2+4x^2+z^2+8xy-4xz-4yz+4y^2+4z^2+x^2+8yz-4xy-4xz}{9}+\dfrac{\left(2z+2x-y\right)^2}{9}\)

\(=\dfrac{8y^2+5x^2+5z^2+4xy-8xz+4yz+4z^2+4x^2+y^2+8xz-4yz-4xy}{9}\)

\(=\dfrac{9y^2+9z^2+9x^2}{9}=x^2+y^2+z^2\)

2 tháng 9 2018

\(yz\left(y+z\right)+zx\left(z-x\right)-xy\left(x+y\right)\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left[\left(y+z\right)-\left(z-x\right)\right]\)

\(=yz\left(y+z\right)+zx\left(z-x\right)-xy\left(y+z\right)+xy\left(z-x\right)\)

\(=y\left(y+z\right)\left(z-x\right)+x\left(z-x\right)\left(z-y\right)\)

\(=\left(z-x\right)\left(yz-xy+xz-xy\right)\)