K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 10 2020

\(x^2+y^2=xy+1\Rightarrow\left(x^2+y^2\right)^2=\left(xy+1\right)^2\)do hai vế lớn hơn hoặc bằng 0

\(\Rightarrow x^4+y^4+2x^2y^2=x^2y^2+2xy+1\)

\(\Rightarrow x^4+y^4-x^2y^2=-2x^2y^2+2xy+1\)

\(\Rightarrow x^4+y^4-x^2y^2=-2\left(xy+\frac{1}{2}\right)^2+\frac{3}{2}\le\frac{3}{2}\)

\(\Rightarrow\left(x^4+y^4-x^2y^2\right)_{max}=\frac{3}{2}\)đạt được khi \(xy=-\frac{1}{2}\)

14 tháng 8 2016

để mk làm nốt cho

\(y^4-2y^3+2y^2-y-2=0\)

<=> \(\left(y^4-2y^3+y^2\right)+\left(y^2-y\right)-2=0\)

<=> \(\left(y^2-y\right)^2+\left(y^2-y\right)-2=0\)

đặt y^2-y=t thì ta có pt \(t^2+t-2=0\)

                       <= >\(\int_{t=-2}^{t=1}\)

với t=1==> \(y^2-y=1\) từ đó tính ra nghiệm x=\(\frac{1+\sqrt{5}}{2}\) và \(x=\frac{1-\sqrt{5}}{2}\)

với t=-2 thì pt vô nghiệm 

14 tháng 8 2016

thế \(x^4-4x^2+8x+4=0\) tách ra ntn hả b

 

3 tháng 1 2021

\(\left\{{}\begin{matrix}\left(x-y\right)^2\ge0=>x^2+y^2\ge2xy\\\left(x+y\right)^2\ge0=>x^2+y^2\ge-2xy\end{matrix}\right.\)

Ta có:

\(\left\{{}\begin{matrix}2\left(x^2+y^2\right)+xy\ge5xy\\2\left(x^2+y^2\right)+xy\ge-3xy\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}1\ge5xy\\1\ge-3xy\end{matrix}\right.\)

\(\Leftrightarrow-\dfrac{1}{3}\le xy\le\dfrac{1}{5}\)

Ta có:

P=\(2\left(x^2+y^2\right)^2-4x^2y^2+2+\left(x^2+y^2+2xy\right)\)

P= \(\dfrac{2\left(1-xy\right)^2}{4}-4\left(xy\right)^2+2+\left(\dfrac{1-xy}{2}+2xy\right)\)

=\(\dfrac{\left(xy\right)^2-2xy+1}{2}-4\left(xy\right)^2+2+\dfrac{3xy}{2}+\dfrac{1}{2}\)

Đặt t = xy => \(-\dfrac{1}{3}\le t\le\dfrac{1}{5}\)

Ta có : 

P= \(\dfrac{-7t^2}{2}+\dfrac{t}{2}+3=-\dfrac{7}{2}\left(t-\dfrac{1}{14}\right)^2+\dfrac{169}{56}\)

Ta có: \(-\dfrac{1}{3}-\dfrac{1}{14}\le t-\dfrac{1}{14}\le\dfrac{1}{5}-\dfrac{1}{14}\)

<=>\(-\dfrac{17}{42}\le t-\dfrac{1}{14}\le\dfrac{9}{70}\)

=> 0\(\le\left(t-\dfrac{1}{14}\right)^2\le\left(\dfrac{17}{42}\right)^2\)

\(\dfrac{169}{56}\ge P\ge\dfrac{169}{56}-\dfrac{7}{2}\left(\dfrac{17}{42}\right)^2\)

Max P= \(\dfrac{169}{56}\) => t = 1/14 => \(xy=\dfrac{1}{14}\rightarrow x^2+y^2=\dfrac{13}{14}\) => x,y=...

Min P=\(\dfrac{169}{56}-\dfrac{7}{6}\left(\dfrac{17}{42}\right)^2\) <=> \(t=xy=-\dfrac{1}{3}\)

<=> x=-y=\(\dfrac{1}{\sqrt{3}}\) 

3 tháng 3 2019

1)Điều kiện: \(x + y > 0\)\((1) \Leftrightarrow (x + y)^2 - 2xy + \dfrac{2xy}{x + y} - 1 = 0 \\ \Leftrightarrow (x + y)^3 - 2xy(x + y) + 2xy -(x + y) = 0 \\ \Leftrightarrow (x+y)[(x+y)^2- 1]-2xy(x+y-1)=0 \\ \Leftrightarrow (x+y)(x+y+1)(x+y-1)-2xy(x+y-1)=0 \\ \Leftrightarrow (x + y - 1)[(x+y)(x + y + 1)-2xy] = 0 \\ \Leftrightarrow \left[ \begin{matrix}x + y = 1 \,\, (3) \\ x^2+y^2+x+y=0 \,\, (4) \end{matrix} \right.\)(4) vô nghiệm vì x + y > 0

Thế (3) vào (2) , giải được nghiệm của hệ :\((x =1 ; y = 0)\)\((x = -2 ; y = 3)\)

3 tháng 3 2019

\((1)\Leftrightarrow (x-2y)+(2x^3-4x^2y)+(xy^2-2y^3)=0\)\(\Leftrightarrow (x-2y)(1+2x^2+y^2)=0\)

\(\Leftrightarrow x=2y\)(vì \(1+2x^2+y^2>0, \forall x,y\))

Thay vào phương trình (2) giải dễ dàng.

3 tháng 7 2016

Tổng hợp hệ pt

NV
28 tháng 3 2021

a.

\(\Leftrightarrow\left\{{}\begin{matrix}x\left(x^2+y^2\right)+\left(x^2+y^2-4\right)\left(y+2\right)=0\\x^2+y^2+\left(x+y-2\right)\left(y+2\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}\left(x^2+y^2-4\right)\left(y+2\right)=-x\left(x^2+y^2\right)\\-\left(x^2+y^2\right)=\left(x+y-2\right)\left(y+2\right)\end{matrix}\right.\)

\(\Rightarrow\left(x^2+y^2-4\right)\left(y+2\right)=x\left(x+y-2\right)\left(y+2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y+2=0\left(\text{không thỏa mãn}\right)\\x^2+y^2-4=x\left(x+y-2\right)\end{matrix}\right.\) 

\(\Rightarrow x^2+y^2-4=x^2+x\left(y-2\right)\)

\(\Leftrightarrow\left(y+2\right)\left(y-2\right)=x\left(y-2\right)\)

\(\Leftrightarrow\left[{}\begin{matrix}y=2\\x=y+2\end{matrix}\right.\)

Thế vào pt dưới:

\(\Rightarrow\left[{}\begin{matrix}x^2+8+2x+2x-4=0\\\left(y+2\right)^2+2y^2+y\left(y+2\right)+2\left(y+2\right)-4=0\end{matrix}\right.\)

\(\Leftrightarrow...\)

Câu b chắc chắn đề sai, nhìn 2 vế pt đầu đều có \(x^2\) thì chúng sẽ rút gọn, không ai cho đề như thế hết

28 tháng 3 2021

Mk sửa lại đề rồi. Bạn giúp mk giải vs

29 tháng 1 2019

\(x^4+y^4+\dfrac{1}{xy}=xy+2\)

\(\Leftrightarrow\left(x^2-y^2\right)^2=xy-\dfrac{1}{xy}+2-2x^2y^2\ge0\)

Đặt \(xy=a\)

\(\Rightarrow-2a^3+a^2+2a-1\ge0\)

\(\Leftrightarrow\left(a+1\right)\left(a-1\right)\left(1-2a\right)\ge0\)

Ta có a > 0

\(\Rightarrow\left(a-1\right)\left(2a-1\right)\le0\)

\(\Rightarrow\dfrac{1}{2}\le a\le1\) \(\Rightarrow.......\)

16 tháng 2 2020

Đặt \(x^2+y^2=a;xy=b\) \(\Rightarrow a-b=1\Leftrightarrow b=a-1\)

Từ giả thiết:\(x^2+y^2-xy=1\Leftrightarrow x^2+y^2+\left(x-y\right)^2=2\ge x^2+y^2\)

Và \(2x^2+2y^2=2xy+2\Leftrightarrow3\left(x^2+y^2\right)=\left(x+y\right)^2+2\ge2\)\(\Leftrightarrow x^2+y^2\ge\frac{2}{3}\)

Suy ra:\(\frac{2}{3}\le a\le2\)

Ta có:\(x^4+y^4-x^2y^2=\left(x^2+y^2\right)^2-3x^2y^2=a^2-3b^2=-2a^2+6a-3\)

Đến đây vẽ bảng biến thiên ra :)) 

6 tháng 9 2021

Ta có \(2=\dfrac{1}{x}+\dfrac{1}{y}\ge\dfrac{2}{\sqrt{xy}}\Leftrightarrow xy\ge1\)

\(A=\dfrac{1}{x^4+y^2+2xy^2}+\dfrac{1}{x^2+y^4+2x^2y}\\ \le\dfrac{1}{4\sqrt[4]{x^6y^6}}+\dfrac{1}{4\sqrt[4]{x^6y^6}}=\dfrac{1}{4xy}+\dfrac{1}{4xy}\\ \le\dfrac{1}{4}+\dfrac{1}{4}=\dfrac{1}{2}\)

Dấu \("="\Leftrightarrow x=y=1\)