Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x1+x2=3; x1*x2=-7
B=(x1+x2)^2-2x1x2
=9-2*(-7)=23
D=(x1+x2)^3-3x1x2(x1+x2)
=3^3-3*(-7)*3
=27+63=90
F=9x1x2+3(x1^2+x2^2)+x1x2
=10x1x2+3*23
=10*(-7)+69
=-1
\(C=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}=\sqrt{3^2-4\cdot\left(-7\right)}=\sqrt{37}\)
a: \(\text{Δ}=\left(m-5\right)^2-4\left(-m+6\right)\)
\(=m^2-10m+25+4m-24\)
\(=m^2-6m+1=\left(m-3\right)^2-8\)
Để phương trình có hai nghiệm thì \(\left(m-3\right)^2>=8\)
\(\Leftrightarrow\left[{}\begin{matrix}m>=2\sqrt{2}+3\\m< =-2\sqrt{2}+3\end{matrix}\right.\)
Theo đề, ta có: \(\left\{{}\begin{matrix}2x_1+3x_2=13\\x_1+x_2=m-5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x_1+3x_2=13\\2x_1+2x_2=2m-10\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x_2=13-2m+10=-2m+25\\x_1=m-5+2m-25=3m-30\end{matrix}\right.\)
Ta có: \(x_1x_2=-m+6\)
\(\Leftrightarrow\left(2m-25\right)\left(3m-30\right)=m-6\)
\(\Leftrightarrow6m^2-60m-75m+750-m+6=0\)
\(\Leftrightarrow6m^2-136m+756=0\)
hay \(m\in\left\{\dfrac{34+\sqrt{22}}{3};\dfrac{34-\sqrt{22}}{3}\right\}\)
b: \(x_1+x_2+x_1x_2-11=0\)
\(\Leftrightarrow m-5-m+6-11=0\)
=>-12=0(vô lý)
1, thay m=-2 vào giải chắc bạn làm đc nếu k liên hệ mình giải cho
b, giải sử pt có 2 nghiệm pb, áp dụng hệ thức vi ét ta có: \(x1+x2=2m+2\); \(x1.x2=m-2\Leftrightarrow2.x1.x2=2m-4\)
=> \(x1+x2-2.x1.x2=2m+2-2m+4=6\)=> hệ thức liên hệ k phụ thuộc vào m
2) \(\Delta=4\left(m-3\right)^2+4>0\) với mọi m=> pt luôn có 2 nghiệm pb
áp dụng hệ thức vi ét ta có: \(x1+x2=2m-6\); \(x1.x2=-1\)
câu này bạn xem có sai đề k. loại bài toán áp dụng hệ thức vi ét này k bao giờ có đề là x1-x2 đâu nha
sửa đề rồi liên hệ để mình làm tiếp nha
\(F=x_1^2-3x_2-2013\)
Áp dụng Viét: \(\left\{{}\begin{matrix}x_1+x_2=-3\\x_1x_2=-7\end{matrix}\right.\)
Vì \(x_1\) là nghiệm của PT nên \(x_1^2+3x_1-7=0\Leftrightarrow x_1^2=7-3x_1\)
\(\Leftrightarrow F=7-3x_1-3x_2-2013\\ F=-2006-3\left(x_1+x_2\right)=-2006-3\left(-3\right)=-1997\)
Theo ht Viet :
\(\int^{x1+x2=\frac{\sqrt{85}}{4}}_{x1x2=\frac{21}{16}}\)
Xét \(x1^3-x2^3=\left(x1-x2\right)^3-3x1x2\left(x1-x2\right)\) (1)
(+) tính x1 - x2
TA có \(\left(x1-x2\right)^2=x1^2-2x1x2+x2^2=\left(x1+x2\right)^2-4x1x2=\left(\frac{\sqrt{85}}{4}\right)^2-4\left(\frac{21}{16}\right)\)
Rút gọn => x1 - x2 sau đó thay vào (1)
b) Xét a = 0 pt <=> x - 2 = 0 => x = 2 ( TM )
Xét a khác 0 pt là pt bậc 2
\(\Delta=\left(2a-1\right)^2-4a\left(a-2\right)=4a^2-4a+1-4a^2+8a=4a+1\)
LẬp luận như bài lần trước ta có a = n(n+1) với n nguyên
Phương trình có nghiệm x1,x2
Theo viet ta có
\(\hept{\begin{cases}x_1+x_2=\frac{\sqrt{10}}{2}\\x_1x_2=\frac{1}{4}\end{cases}}\)
=> \(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=\frac{10}{4}-\frac{1}{2}=2\)
Khi đó
\(P=\sqrt{x_1^4+8\left(2-x_1^2\right)}+\sqrt{x_2^4+8\left(2-x^2_2\right)}\)
\(=\sqrt{\left(x_1^2-4\right)^2}+\sqrt{\left(x^2_2-4\right)^2}\)
Mà \(x^2_1+x^2_2=2\)nên \(x^2_1< 2,x^2_2< 2\)
=> \(P=4-x_1^2+4-x^2_2=8-2=6\)
Vậy P=6