Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(A=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
\(=>A=x^3z-x^3y^2+y^3x-y^3z^2+z^3y-z^3x^2+x^2y^2z^2-xyz\)
\(=>A=\left(x^3z-xyz\right)+\left(x^2y^2z^2-x^3y^2\right)-\left(y^3z^2-y^3x\right)-\left(z^3x^2-z^3y\right)\)
\(=>A=x^2y^2\left(z^2-x\right)+xz\left(x^2-y\right)-y^3\left(z^2-x\right)-z^3\left(x^2-y\right)\)(1)
Thay \(x^2-y=a , z^2-x=c\) Vào (1) ta có \(A=cx^2y^2+axz-cy^3-az^3\)
\(=>A=cy^2\left(x^2-y\right)-az\left(z^2-x\right)\)(2)
Thay \(x^2-y=a , z^2-x=c\) vào (2) ta có \(A=acy^2-acz=ac\left(y^2-z\right)\)(3)
Thay \(y^2-z=b\) vào ta có \(A=abc\)
Vậy giá trị của biểu thức A ko phụ thuộc vào biến x,y,z .
B1:Ta có ;n(n+5)- (n-3) (n+2)= n2 + 5n- n2- 2n+3n+6= 6n+6= 6.(n+1)
=> 6.(n+1) chia hết cho 6 với mọi n thuộc N
Vậy;...........................
Câu hỏi của Yến Trần - Toán lớp 8 - Học toán với OnlineMath
Trả lời :
Tham khảo link này : https://olm.vn/hoi-dap/detail/6401290031.html
- Hok tốt !
^_^
\(P=\left(x^2-y\right)\left(y^2-z^2\right)\left(z^2-x\right)=abc\)
Ta có: \(P=x^3\left(z-y^2\right)+y^3\left(x-z^2\right)+z^3\left(y-x^2\right)+xyz\left(xyz-1\right)\)
\(=x^3\left(z-y^2\right)+xy^3-y^3z^2+yz^3-x^2z^3+x^2y^2z^2-xyz\)
\(=x^3\left(z-y^2\right)+\left(xy^3-xyz\right)-\left(y^3z^2-yz^3\right)-\left(x^2z^3-x^2y^2z^2\right)\)
\(=x^3\left(z-y^2\right)+xy\left(y^2-z\right)-yz^2\left(y^2-z\right)-x^2z^2\left(z-y^2\right)\)
\(=\left(y^2-z\right)\left(-x^3+xy-yz^2+x^2z^2\right)\)
\(=\left(y^2-z\right)\left[\left(-x^3+xy\right)-\left(yz^2-x^2z^2\right)\right]\)
\(=\left(y^2-z\right)\left[x\left(-x^2+y\right)-z^2\left(y-x^2\right)\right]\)
\(=\left(y^2-z\right)\left(x-z^2\right)\left(y-x^2\right)\)
\(=b.\left(-c\right).\left(-a\right)=abc\)
Vậy giá trị của biểu thức không phụ thuộc vào giá trị của các biến x,y,z