Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
x2 - 2xy + 2y2 - 2x + 6y + 13 = 0
<=> x2 - 2x(y + 1) + 2y2 + 6y + 13 = 0
<=> x2 - 2x(y + 1) + (y + 1)2 + y2 + 4y + 12 = 0
<=> (x - y - 1)2 + (y + 1)2 + (y + 2)2 + 8 = 0
Vô lí do VT > 0 vs mọi x; y
=> Ko tìm đc gtri của N
Cho các số x khác 2y thỏa mãn x2- 2xy - 2y2 - 3x +6y=0
Tính giá trị biểu thức A= x2+ 2xy _y2 - 2x- 2y
Ta có :x2 - 2xy + 2y2 - 2x + 6y + 13 = 0
=> x2 - 2x(y + 1) + 2y2 + 6y + 13 = 0
=> x2 - 2x(y + 1) + (y + 1)2 + y2 + 4y + 12 = 0
=> (x - y - 1)2 + (y + 1)2 + (y + 2)2 + 8 = 0
Xét thấy vế trái luôn lớn hơn 0; mà vê phải lại bằng 0
Bạn xem lại đề nhé
\(x^2-2xy+2y^2-2x+6y+5=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(-2x+2y\right)+1+\left(y^2+4y+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2-2\left(x-y\right)+1+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left(x-y-1\right)^2+\left(y+2\right)^2=0\)
\(\Leftrightarrow\left\{\begin{matrix}x-y-1=0\\y+2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{\begin{matrix}x=-1\\y=-2\end{matrix}\right.\)
\(\Rightarrow A=\frac{3x^2y-1}{4xy}=\frac{3.\left(-1\right)^2.\left(-2\right)-1}{4.\left(-1\right).\left(-2\right)}=-\frac{7}{8}\)
\(\left(y-x+1\right)^2+\left(y+2\right)^2=0\\ \)
\(\Rightarrow\hept{\begin{cases}y=-2\\x=-1\end{cases}\Rightarrow\frac{3x^2y+1}{5xy}}=\frac{-6+1}{10}=-\frac{1}{2}\)