K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
13 tháng 12 2023

Bạn nên viết lại đề bằng công thức toán (biểu tượng $\sum$ góc trái khung soạn thảo) để mọi người hiểu đề của bạn hơn nhé.

13 tháng 6 2021

Xét phương trình: \(x^2-2\left(m+3\right)x+2m+5=0\Rightarrow\Delta'=\left(m+3\right)^2-2m-5=\left(m+2\right)^2\ge0\) .

Do đó phương trình luôn có 2 nghiệm và để phương trình có 2 nghiệm phân biệt thì \(m\ne-2.\)

Theo định lý viet thì ta có: \(\hept{\begin{cases}x_1+x_2=2m+6\\x_1x_2=2m+5\end{cases}}\). Do đó: \(m>-\frac{5}{2}\)\(\frac{1}{\sqrt{x_1}}+\frac{1}{\sqrt{x_2}}=\frac{4}{3}\Rightarrow\frac{1}{x_1}+\frac{1}{x_2}+2\sqrt{\frac{1}{x_1x_2}}=\frac{x_1+x_2}{x_1x_2}+2\sqrt{\frac{1}{2m+5}}=\frac{16}{9}\)

\(\Leftrightarrow\frac{2m+6}{2m+5}+2\sqrt{\frac{1}{2m+5}}=\frac{1}{2m+5}+2\sqrt{\frac{1}{2m+5}}+1=\left(\sqrt{\frac{1}{2m+5}}+1\right)^2=\frac{16}{9}\)

\(\Rightarrow\sqrt{\frac{1}{2m+5}}=\frac{1}{3}\Leftrightarrow\frac{1}{2m+5}=\frac{1}{9}\Leftrightarrow2m+5=9\Leftrightarrow m=2.\)

Vậy \(m=2.\)

25 tháng 10 2023

a: Sửa đề: PT x^2-2x-m-1=0

Khi m=2 thì Phương trình sẽ là:

x^2-2x-2-1=0

=>x^2-2x-3=0

=>(x-3)(x+1)=0

=>\(\left[{}\begin{matrix}x-3=0\\x+1=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)

b:

\(\text{Δ}=\left(-2\right)^2-4\left(-m-1\right)\)

\(=4+4m+4=4m+8\)

Để phương trình có hai nghiệm dương thì

\(\left\{{}\begin{matrix}4m+8>0\\2>0\\-m-1>0\end{matrix}\right.\Leftrightarrow-2< m< -1\)

\(\sqrt{x_1}+\sqrt{x_2}=2\)

=>\(x_1+x_2+2\sqrt{x_1x_2}=4\)

=>\(2+2\sqrt{-m-1}=4\)

=>\(2\sqrt{-m-1}=2\)

=>-m-1=1

=>-m=2

=>m=-2(loại)

1) Thay m=1 vào phương trình, ta được:

\(x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: Khi m=1 thì phương trình có nghiệm duy nhất là x=1

1) Bạn tự làm

2) Ta có: \(\Delta'=\left(m-1\right)^2\ge0\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm

Theo Vi-ét, ta có: \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=2m-1\end{matrix}\right.\) 

a) Ta có: \(x_1+x_2=-1\) \(\Rightarrow2m=-1\) \(\Leftrightarrow m=-\dfrac{1}{2}\)

   Vậy ...

b) Ta có: \(x_1^2+x_2^2=13\) \(\Rightarrow\left(x_1+x_2\right)^2-2x_1x_2=13\)

            \(\Rightarrow4m^2-4m-11=0\) \(\Leftrightarrow m=\dfrac{1\pm\sqrt{13}}{2}\)

  Vậy ... 

a: Khim=0 thì (1) trở thành \(x^2-2=0\)

hay \(x\in\left\{\sqrt{2};-\sqrt{2}\right\}\)

Khi m=1 thì (1) trở thành \(x^2-2x=0\)

=>x=0 hoặc x=2

b: \(\text{Δ}=\left(-2m\right)^2-4\left(2m-2\right)\)

\(=4m^2-8m+8=4\left(m-1\right)^2>=0\)

Do đó: Phương trình luôn có hai nghiệm

9 tháng 3 2018

a, Khi m = 2

pt trở thành : x^2 - 6x + 4 = 0

<=> (x^2-6x+9) - 5 = 0

<=> (x-3)^2 = 5

<=> x=3+-\(\sqrt{5}\)

Tk mk nha

27 tháng 3 2020

b) Câu hỏi của Mavis Dracula - Toán lớp 9 - Học toán với OnlineMath

10 tháng 4 2018

khi m = 3. ta có : x2 - 6x + 4 = 0

\(\Delta\)' = (-3)2 - 4 = 5 > 0

=> pt có 2 nghiệm phân biệt

x1 = 3 - \(\sqrt{5}\)

x2 = 3 + \(\sqrt{5}\)

b) \(\Delta\)' = (-m)2 - 4 = m2 - 4

để pt có nghiệm thì m2 - 4 \(\ge\) 0

<=> m2 \(\ge\) 4

<=> \(\left\{{}\begin{matrix}m\ge2\\m\le-2\end{matrix}\right.\)

theo hệ thức vi - ét thì : \(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1.x_2=4\end{matrix}\right.\)

ta có : ( x1 + 1 )2 + ( x2 + 1 )2 = 2

<=> x12+ 2x1 + 1 + x22 + 2x2 + 1 = 2

<=> x12 + x22 + 2( x1 + x2 ) = 0

<=> x12 + 2x1x2 + x22 - 2x1x2 + 2( x1 + x2 ) = 0

<=> ( x1 + x2 )2 - 2x1x2 + 2( x1+ x2 ) = 0

<=> (2m)2 - 2.4 + 2.2m = 0

<=> 4m2 + 4m - 8 = 0

nhận thấy a + b + c = 4 + 4 - 8 = 0

<=> pt có 2 nghiệm pb :

m1 = 1 ( loại )

m2 = -2 ( TM )

vậy để pt (1) thỏa mãn ( x1 + 1 )2 + ( x2 + 1 )2 = 2 thì m = -2