K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2015

giấu tên da ko giup Yuki thi thui cu bay dat doi **** nay no

14 tháng 12 2015

hà lê is very good, i too

21 tháng 5 2019

( x1p - y1q )2n \(\ge\)0 ; ( x2p - y2q )2n \(\ge\)0 ; ... ; ( xmp - ymq )2n \(\ge\)0

vậy ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\ge\) 0

mà ( x1p - y1q )2n + ( x2p - y2q )2n  + ... + ( xmp - ymq )2n \(\le\)0

suy ra x1p - y1q = x2p - y2q = ... = xmp - ymq = 0

do đó : \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{p_m}=\frac{q}{p}\)hay \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)

14 tháng 11 2016

Bạn thêm điều kiện m,n là số tự nhiên nhé!

Giải như sau : 

Với n là số tự nhiên thì ta luôn có 2n là số chẵn.

Xét trong giả thiết thì các hạng tử có số mũ chẵn.

Vậy thì ta có : \(\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+...+\left(x_mp-y_mq\right)^{2n}\ge0\)

Kết hợp với giả thiết bài toán ta được \(\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+...+\left(x_mp-y_mq\right)^{2n}=0\)

\(\Leftrightarrow x_ip-y_iq=0\) (i = 1,2,...,m)

\(\Leftrightarrow x_ip=y_iq\Leftrightarrow\frac{x_i}{y_i}=\frac{q}{p}\)

Ta thay i = 1,2,...,m thì được : \(\frac{q}{p}=\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{y_m}=\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}\) (áp dụng tính chất dãy tỉ sô bằng nhau)

hay : \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\) (đpcm)

21 tháng 1 2019

Kiến thức cơ bản :v 

GT : \(\left(x_1a-y_1b\right)^{2n}+\left(x_2a-y_2b\right)^{2n}+\left(x_3a+y_3b\right)^{2n}+...+\left(x_ma-y_mb\right)^{2n}\le0\)

Có : \(\left(x_1a-y_1b\right)^{2n}+\left(x_2a-y_2b\right)^{2n}+\left(x_3a-y_3b\right)^{2n}+...+\left(x_ma-y_mb\right)^{2n}\ge0\)

\(\Rightarrow\)\(x_1a-y_1b=x_2a-y_2b=x_3a-y_3b=...=x_ma-y_mb=0\)

\(\Rightarrow\)\(x_1a=y_1b\)\(;\)\(x_2a=y_2b\)\(;\)\(x_3a=y_3b\)\(;\)\(...\)\(;\)\(x_ma=y_mb\)

\(\Rightarrow\)\(\frac{x_1}{y_2}=\frac{x_2}{y_2}=\frac{x_3}{y_3}=...=\frac{x_m}{y_m}=\frac{b}{a}\) \(\left(1\right)\)

Tính chất dãy tỉ số bằng nhau : 

\(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{x_3}{y_3}=...=\frac{x_m}{y_m}=\frac{x_1+x_2+x_3+...+x_m}{y_1+y_2+y_3+...+y_m}=\frac{b}{a}\) ( đpcm ) 

23 tháng 1 2019

Phùng Minh Quân:tại sao dòng thứ hai lại đổi dấu \(\le\rightarrow\ge\)?

13 tháng 12 2019

Ta có: \(2n\)\(⋮\)\(2\)=> 2n là số chẵn

 \(\Rightarrow\left(x_1p-y_1q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\)\(\left(x_2p-y_2q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\);.... ;  \(\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

\(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)

Mà \(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\le0\)\(m,n\inℕ^∗\)

Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x_1p-y_1q\right)^{2n}=0\\......\\\left(x_mp-y_mq\right)^{2n}=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p-y_1q=0\\.....\\x_mp-y_mq=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p=y_1q\\.....\\x_mp=y_mq\end{cases}}\)\(\Rightarrow x_1p+x_2p+....+x_mp=y_1q+y_2q+...+y_mq\)

\(\Rightarrow p\left(x_1+x_2+...+x_m\right)=q\left(y_1+y_2+...+y_m\right)\)

\(\Rightarrow\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)(đpcm)

28 tháng 6 2019

\(n\in N\)(n>0)\(\Rightarrow\left(x_1a-y_1b\right)^{2n}\ge0,...,\left(x_ma-y_mb\right)^{2n}\ge0\)\(\Rightarrow VT\ge0\)

Dấu "=" xra khi \(x_1a-y_1b=0;...;x_ma-y_mb=0\left(a,b>0\right)\Rightarrow\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{y_m}=\frac{b}{a}\)

Theo t/c dãy tỉ số bằng nhau:

\(\Rightarrow\frac{b}{a}=\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}\)(đpcm)

10 tháng 1 2016

Ta có: \(\left(x_1p-y_1q\right)^{2n}\ge0;\left(x_2p-y_2q\right)^{2n}\ge0;....;\left(x_mp+y_mq\right)^{2n}\ge0\)

=>(x1p-y1q)2n+(x2p-y2q)2n+...+(xmp-ymq)2n > hoặc = 0

Mà theo đề (x1p-y1q)2n+(x2p-y2q)2n+...+(xmp-ymq)2n < hoặc = 0

nên: (x1p-y1q)2n+(x2p-y2q)2n+...+(xmp-ymq)2n=0

=>x1p-y1q=0 =>x1=y1q/p

    x2p-y2q=0 =>x2=y2q/p

........

    xmp-ymq=0 =>xm=ymq/p

Suy ra: \(\frac{x_1+x_2+...+x_n}{y_1+y_2+....+y_n}=\frac{\frac{y_1q}{p}+\frac{y_2q}{p}+...+\frac{y_mq}{p}}{y_1+y_2+...+y_m}=\frac{\frac{q}{p}\left(y_1+y_2+....+y_m\right)}{y_1+y_2+...+y_m}=\frac{q}{p}\)

=>điều phải chứng minh

10 tháng 1 2016

ah quen!thieu dieu kien Cho......\(\le0\)voi moi m,n thuocN*