Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
( x1p - y1q )2n \(\ge\)0 ; ( x2p - y2q )2n \(\ge\)0 ; ... ; ( xmp - ymq )2n \(\ge\)0
vậy ( x1p - y1q )2n + ( x2p - y2q )2n + ... + ( xmp - ymq )2n \(\ge\) 0
mà ( x1p - y1q )2n + ( x2p - y2q )2n + ... + ( xmp - ymq )2n \(\le\)0
suy ra x1p - y1q = x2p - y2q = ... = xmp - ymq = 0
do đó : \(\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{p_m}=\frac{q}{p}\)hay \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)
Bạn thêm điều kiện m,n là số tự nhiên nhé!
Giải như sau :
Với n là số tự nhiên thì ta luôn có 2n là số chẵn.
Xét trong giả thiết thì các hạng tử có số mũ chẵn.
Vậy thì ta có : \(\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+...+\left(x_mp-y_mq\right)^{2n}\ge0\)
Kết hợp với giả thiết bài toán ta được \(\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+...+\left(x_mp-y_mq\right)^{2n}=0\)
\(\Leftrightarrow x_ip-y_iq=0\) (i = 1,2,...,m)
\(\Leftrightarrow x_ip=y_iq\Leftrightarrow\frac{x_i}{y_i}=\frac{q}{p}\)
Ta thay i = 1,2,...,m thì được : \(\frac{q}{p}=\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{y_m}=\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}\) (áp dụng tính chất dãy tỉ sô bằng nhau)
hay : \(\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\) (đpcm)
Kiến thức cơ bản :v
GT : \(\left(x_1a-y_1b\right)^{2n}+\left(x_2a-y_2b\right)^{2n}+\left(x_3a+y_3b\right)^{2n}+...+\left(x_ma-y_mb\right)^{2n}\le0\)
Có : \(\left(x_1a-y_1b\right)^{2n}+\left(x_2a-y_2b\right)^{2n}+\left(x_3a-y_3b\right)^{2n}+...+\left(x_ma-y_mb\right)^{2n}\ge0\)
\(\Rightarrow\)\(x_1a-y_1b=x_2a-y_2b=x_3a-y_3b=...=x_ma-y_mb=0\)
\(\Rightarrow\)\(x_1a=y_1b\)\(;\)\(x_2a=y_2b\)\(;\)\(x_3a=y_3b\)\(;\)\(...\)\(;\)\(x_ma=y_mb\)
\(\Rightarrow\)\(\frac{x_1}{y_2}=\frac{x_2}{y_2}=\frac{x_3}{y_3}=...=\frac{x_m}{y_m}=\frac{b}{a}\) \(\left(1\right)\)
Tính chất dãy tỉ số bằng nhau :
\(\frac{x_1}{y_1}=\frac{x_2}{y_2}=\frac{x_3}{y_3}=...=\frac{x_m}{y_m}=\frac{x_1+x_2+x_3+...+x_m}{y_1+y_2+y_3+...+y_m}=\frac{b}{a}\) ( đpcm )
Ta có: \(2n\)\(⋮\)\(2\)=> 2n là số chẵn
\(\Rightarrow\left(x_1p-y_1q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\); \(\left(x_2p-y_2q\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;n\inℕ^∗\);.... ; \(\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)
\(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\ge0\)\(\forall x,p,y,q\inℝ;m,n\inℕ^∗\)
Mà \(\Rightarrow\left(x_1p-y_1q\right)^{2n}+\left(x_2p-y_2q\right)^{2n}+....+\left(x_mp-y_mq\right)^{2n}\le0\)\(m,n\inℕ^∗\)
Dấu " = " xảy ra <=> \(\hept{\begin{cases}\left(x_1p-y_1q\right)^{2n}=0\\......\\\left(x_mp-y_mq\right)^{2n}=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p-y_1q=0\\.....\\x_mp-y_mq=0\end{cases}}\Rightarrow\hept{\begin{cases}x_1p=y_1q\\.....\\x_mp=y_mq\end{cases}}\)\(\Rightarrow x_1p+x_2p+....+x_mp=y_1q+y_2q+...+y_mq\)
\(\Rightarrow p\left(x_1+x_2+...+x_m\right)=q\left(y_1+y_2+...+y_m\right)\)
\(\Rightarrow\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}=\frac{q}{p}\)(đpcm)
\(n\in N\)(n>0)\(\Rightarrow\left(x_1a-y_1b\right)^{2n}\ge0,...,\left(x_ma-y_mb\right)^{2n}\ge0\)\(\Rightarrow VT\ge0\)
Dấu "=" xra khi \(x_1a-y_1b=0;...;x_ma-y_mb=0\left(a,b>0\right)\Rightarrow\frac{x_1}{y_1}=\frac{x_2}{y_2}=...=\frac{x_m}{y_m}=\frac{b}{a}\)
Theo t/c dãy tỉ số bằng nhau:
\(\Rightarrow\frac{b}{a}=\frac{x_1+x_2+...+x_m}{y_1+y_2+...+y_m}\)(đpcm)
Ta có: \(\left(x_1p-y_1q\right)^{2n}\ge0;\left(x_2p-y_2q\right)^{2n}\ge0;....;\left(x_mp+y_mq\right)^{2n}\ge0\)
=>(x1p-y1q)2n+(x2p-y2q)2n+...+(xmp-ymq)2n > hoặc = 0
Mà theo đề (x1p-y1q)2n+(x2p-y2q)2n+...+(xmp-ymq)2n < hoặc = 0
nên: (x1p-y1q)2n+(x2p-y2q)2n+...+(xmp-ymq)2n=0
=>x1p-y1q=0 =>x1=y1q/p
x2p-y2q=0 =>x2=y2q/p
........
xmp-ymq=0 =>xm=ymq/p
Suy ra: \(\frac{x_1+x_2+...+x_n}{y_1+y_2+....+y_n}=\frac{\frac{y_1q}{p}+\frac{y_2q}{p}+...+\frac{y_mq}{p}}{y_1+y_2+...+y_m}=\frac{\frac{q}{p}\left(y_1+y_2+....+y_m\right)}{y_1+y_2+...+y_m}=\frac{q}{p}\)
=>điều phải chứng minh
giấu tên da ko giup Yuki thi thui cu bay dat doi **** nay no
hà lê is very good, i too