Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\left(x+2013\right)^2\ge4.x.2013\Rightarrow\frac{x}{\left(x+2013\right)^2}\le\frac{x}{4.x.2013}=\frac{1}{4.2013}\)
Vậy GTLN của M .... Tại x = 2013
Lời giải:
$\frac{3}{2}B=\frac{3\sqrt{x}}{x+\sqrt{x}+1}$
$\Rightarrow 1-\frac{3}{2}B=1-\frac{3\sqrt{x}}{x+\sqrt{x}+1}=\frac{x-2\sqrt{x}+1}{x+\sqrt{x}+1}=\frac{(\sqrt{x}-1)^2}{x+\sqrt{x}+1}\geq 0$ với mọi $x\geq 0$
$\Rightarrow \frac{3}{2}B\leq 1$
$\Rightarrow B\leq \frac{2}{3}$
Vậy $B_{\max}=\frac{2}{3}$ khi $\sqrt{x}-1=0\Leftrightarrow x=1$
Bạn thêm điều kiện x,y,z lớn hơn 0 nhé :)
Từ giả thiết ta suy ra : \(a^2=b+4032\Rightarrow\left(x+y+z\right)^2=x^2+y^2+z^2+4032\)
\(\Rightarrow xy+yz+zx=2016\)thay vào :
\(x\sqrt{\frac{\left(2016+y^2\right)\left(2016+z^2\right)}{2016+x^2}}=x\sqrt{\frac{\left(y^2+xy+yz+zx\right)\left(z^2+xy+yz+zx\right)}{x^2+xy+yz+zx}}\)
\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(z+y\right)\left(z+x\right)}{\left(x+y\right)\left(x+z\right)}}=x\sqrt{\left(y+z\right)^2}=x\left|y+z\right|=xy+xz\)vì x,y,z > 0
Tương tự : \(y\sqrt{\frac{\left(2016+z^2\right)\left(2016+x^2\right)}{2016+y^2}}=xy+zy\)
\(z\sqrt{\frac{\left(2016+x^2\right)\left(2016+y^2\right)}{2016+z^2}}=zx+zy\)
Suy ra \(P=2\left(xy+yz+zx\right)=2.2016=4032\)
Cách 1:
Áp dụng BĐT Cô-si:
$x+1\geq 2\sqrt{x}\Rightarrow A=\frac{3\sqrt{x}}{x+1}\leq \frac{3\sqrt{x}}{2\sqrt{x}}=\frac{3}{2}$
Vậy $A_{\max}=\frac{3}{2}$
Giá trị này đạt tại $x=1$
Cách 2:
$\frac{2}{3}A=\frac{2\sqrt{x}}{x+1}$
$\Rightarrow 1-\frac{2}{3}A=1-\frac{2\sqrt{x}}{x+1}=\frac{x-2\sqrt{x}+1}{x+1}=\frac{(\sqrt{x}-1)^2}{x+1}\geq 0$ với mọi $x\geq 0$
$\Rightarrow \frac{2}{3}A\leq 1$
$\Rightarrow A\leq \frac{3}{2}$
Vậy $A_{\max}=\frac{3}{2}$. Giá trị này đạt tại $\sqrt{x}-1=0\Leftrightarrow x=1$
Áp dụng hệ thức Vi-et, ta có :
\(\hept{\begin{cases}x_1+x_2=2\left(m+1\right)\\x_1.x_2=-\left(2m+3\right)\end{cases}}\)
Đặt \(A=\left|\frac{x_1+x_2}{x_1-x_2}\right|\ge0\). A đạt giá trị nhỏ nhất \(\Leftrightarrow A^2\)đạt giá trị nhỏ nhất.
Ta có : \(A^2=\left(\frac{x_1+x_2}{x_1-x_2}\right)^2=\frac{\left(x_1+x_2\right)^2}{\left(x_1+x_2\right)^2-4x_1.x_2}=\frac{4\left(m+1\right)^2}{4\left(m+1\right)^2+4\left(2m+3\right)}=\frac{4\left(m+1\right)^2}{4m^2+16m+16}=\frac{\left(m+1\right)^2}{\left(m+2\right)^2}\ge0\)
Suy ra \(MinA^2=0\Leftrightarrow m=-1\)
Vậy Min A = 0 \(\Leftrightarrow\)m = -1
ở bài này phải chỉ ra \(\Delta'\)lớn hơn hoặc bằng 0 , hoặc chỉ ra a và c trái dấu nên phương trình có 2 nghiệm x1,x2 thì mới được áp dụng hệ thức Viét
Bài 2 nếu ko dùng casio thì tìm điểm rơi bằng đạo hàm very EZ.
\(A=x^2-3x+\frac{4}{x}+2016\)
\(=\left(x-2\right)^2+x+\frac{4}{x}+2016\)
\(\ge\left(x-2\right)^2+2\sqrt{x\cdot\frac{4}{x}}+2012\ge2016\)
Dấu "=" xảy ra tại \(x=2\)
Em không biết đạo hàm là gì (vì bác Cool Kid quá đẳng cấp, học hết kiến thức cấp 3) nên em chỉ dùng cách lớp 8 hèn mọn thôi! Mà bác Cool Kid dòng 3 nhầm cmnr
Nháp:
Giả sử A đạt min tại x = a.
Ta có: \(A=\left(x^2-2ax+a^2\right)+\left(2a-3\right)x+\frac{4}{x}+2016-a^2\)
\(\ge\left(x-a\right)^2+2\sqrt{4\left(2a-3\right)}+2016-a^2\)
Để đẳng thức xảy ra thì: \(\hept{\begin{cases}x=a\\\left(2a-3\right)x=\frac{4}{x}\end{cases}}\Leftrightarrow\hept{\begin{cases}x^2=a^2\\x^2=\frac{4}{2a-3}\end{cases}}\Rightarrow a^2=\frac{4}{2a-3}\Rightarrow a=2\)
Thay ngược lại là xong. Trình bày như sau:
\(A=\left(x-2\right)^2+x+\frac{4}{x}+2012\)
\(\ge\left(x-2\right)^2+2\sqrt{x.\frac{4}{x}}+2012=2016\)
Đẳng thức xảy ra khi x = 2
Ta có P đạt giá trị lớn nhất khi \(\frac{1}{P}\) đạt giá trị nhỏ nhất. (Vì x > 0 nên ta có thể viết thành 1/P)
Khi đó : \(\frac{1}{P}=\frac{\left(x+2016\right)^2}{x}=\frac{x^2+4032x+2016^2}{x}=x+\frac{2016^2}{x}+4032\ge2\sqrt{x.\frac{2016^2}{x}}+4032=8064\) (BĐT Cauchy)
Dấu "=" xảy ra khi x = 2016
Vậy 1/P đạt giá trị nhỏ nhất bằng 8064 khi x = 2016
Suy ra P đạt giá trị lớn nhất bằng 1/8064 khi x = 2016
cảm ơn