Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P(x)=4x^2+4x-3=4x2+2x+2x+1-4
=2x.(2x+1)+(2x+1)-4
=(2x+1)(2x+1)-4
=(2x+1)2-4 \(\ge\)-4
Vậy GTNN của P(x) là -4 tại x=-1/2
\(\Leftrightarrow\)2A\(=2X^2+2XY+2Y^2-6X+6Y\)
\(\Leftrightarrow\)\(2A\)\(=X^2+2XY+Y^2\)\(+X^2-6X+9+Y^2+6Y+9\)\(-18\)
\(\Leftrightarrow2A=\left(X+Y\right)^2+\left(X-3\right)^2+\left(Y+3\right)^2\)\(-18\)
\(\Rightarrow2A\ge-18\)
\(\Rightarrow A\ge-9\)
DẤU "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x=-y\\x=3\\y=-3\end{cases}}\)
\(A=31-\sqrt{2x+7}\)
Ta có: điều kiện để có căn:\(\sqrt{2x+7}\) thì :\(2x+7\ge0\Rightarrow2x\ge-7\Rightarrow x\ge-3,5\)
Với mọi \(x\ge-3,5\) ta có:
\(\sqrt{2x+7}\ge0\)
\(\Rightarrow A=31-\sqrt{2x+7}\le31\)
Dấu "=" xảy ra khi:
\(\sqrt{2x+7}=0\Rightarrow2x=-7\Rightarrow x=-3,5\)
Vậy \(MAX_A=31\) khi \(x=-3,5\)
\(B=-9+\sqrt{7+x}\)
Ta có: điều kiện để có căn \(\sqrt{7+x}\) thì:
\(x\ge-7\)
Với mọi \(x\ge-7\) ta có:
\(\sqrt{7+x}\ge0\)
\(\Rightarrow-9+\sqrt{7+x}\ge-9\)
Dấu "=" xảy ra khi:
\(\sqrt{7+x}=0\Rightarrow x=-7\)
\(\Rightarrow MIN_B=-9\) khi \(x=-7\)
a, Sửa đề: Tìm GTLN của biểu thức
Vì \(\sqrt{2x+7}\ge0\) \(\Rightarrow-\sqrt{2x+7}\le0\)
\(\Rightarrow31-\sqrt{2x+7}\le31\)
Dấu ''='' xảy ra khi :
\(-\sqrt{2x+7}=0\Rightarrow2x+7=0\Rightarrow x=-3,5\)
Vậy \(A_{Max}=31\) khi và chỉ khi x = -3,5
b, Tìm GTNN của B
Giải: \(B=-9+\sqrt{7+x}=\sqrt{7+x}-9\)
Vì \(\sqrt{7+x}\ge0\Rightarrow\sqrt{7+x}-9\ge-9\)
Dấu ''='' xảy ra khi \(\sqrt{7+x}=0\Rightarrow x=-7\)
Vậy \(B_{Min}=-9\) khi x = -7
p/s: Lần sau gửi đề cẩn thận hơn ||^^
Điều kiện \(x\ne\frac{-2}{3},x\in Z\)
M=\(\frac{2019x-2020}{3x+2}=\frac{673\left(3x+2\right)-3366}{3x+2}=673-\frac{3366}{3x+2}\)
Với \(\hept{\begin{cases}x\in Z\\3x+2>0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x>\frac{-2}{3}\end{cases}}\Rightarrow\frac{3366}{3x+2}>0\Rightarrow M>0\)
Với \(\hept{\begin{cases}x\in Z\\3x+2< 0\end{cases}}\Rightarrow\hept{\begin{cases}x\in Z\\x< \frac{-2}{3}\end{cases}}\)
\(\Rightarrow\)Phân số \(\frac{3366}{3x+2}\)nhỏ nhất\(\Leftrightarrow\)mẫu nguyên âm lớn nhất
\(\Leftrightarrow3x+2=-1\)
\(\Leftrightarrow\)\(3x=-3\)
\(\Leftrightarrow x=-1\)(Thảo mãn điều kiện)
Với x=-1 thì M=4039
Vậy Min M=4039\(\Leftrightarrow x=-1\)
a) \(A=31-\sqrt{2x+7}\)
Ta có: \(-\sqrt{2x+7}\le0\forall x\)
\(\Rightarrow31-\sqrt{2x+7}\le31\forall x\)
Vậy MIN A = 31
GTNN là 4
x-y=2
=>x=y+2
Thay x=y+2 vào Q,ta đc:
\(Q=\left(y+2\right).y+4=y^2+2y+4=y^2+2y+1+3\)
\(Q=y^2+y+y+1+3=y\left(y+1\right)+\left(y+1\right)+3=\left(y+1\right)\left(y+1\right)+3=\left(y+1\right)^2+3\)
Vì \(\left(y+1\right)^2\ge0\Rightarrow\left(y+1\right)^2+3\ge3\)
=>GTNN của Q là 3
Dấu "=" xảy ra <=> y+1=0<=>y=-1
Vậy.............