Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(9x^2+y^2+z^2-36x-16y+10z=-125\)
\(\Leftrightarrow\) \(9x^2+y^2+z^2-36x-16y+10z+125=0\)
\(\Leftrightarrow\) \(9x^2-36x+36+y^2-16y+64+z^2+10z+25=0\)
\(\Leftrightarrow\) \(9\left(x-2\right)^2+\left(y-8\right)^2+\left(z+5\right)^2=0\)
Mà \(\left(x-2\right)^2;\left(y-8\right)^2;\left(z+5\right)^2\ge0\) với mọi \(x;y;z\)
nên \(\left(x-2\right)^2=0;\left(y-8\right)^2=0;\left(z+5\right)^2=0\)
\(\Leftrightarrow\) \(x-2=0;y-8=0;z+5=0\)
\(\Leftrightarrow\) \(x=2;y=8;z=-5\)
Vậy, \(xy+yz+xz=-34\)
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{x^2}{2}+8y^2\geq 4xy\)
\(\frac{x^2}{2}+8z^2\geq 4xz\)
\(2(y^2+z^2)\geq 4yz\)
\(4y^2+1\geq 4y\)
\(4y+2\geq 4\sqrt{2y}\)
Cộng theo vế các BĐT trên ta có:
\(P+3\geq 4(xy+yz+xz)=\frac{9}{4}.4=9\Rightarrow P\geq 6\)
Vậy $P_{\min}=6$. Giá trị này đạt tại $(x,y,z)=(2,\frac{1}{2}, \frac{1}{2})$
Mấy bài như này có cách làm chung không ạ?Hay phải tự nháp...
\(\Leftrightarrow\left(9x^2-18x+9\right)+\left(y^2-6y+9\right)+2\left(z^2+2z+1\right)=0\)
\(\Leftrightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2=0\)(*)
Vì \(\left(x-1\right)\ge0;\left(y-3\right)^2\ge0;\left(z+1\right)^2\ge0\)
\(\Leftrightarrow\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}\Leftrightarrow\hept{\begin{cases}y=1\\y=3\\z=-1\end{cases}}}\)
pt ⇔ ( 9x2 - 18x + 9 ) + ( y2 - 6y + 9 ) + ( 2z2 + 4z + 2 ) = 0
⇔ 9( x2 - 2x + 1 ) + ( y - 3 )2 + 2( z2 + 2z + 1 ) = 0
⇔ 9( x - 1 )2 + ( y - 3 )2 + 2( z + 1 )2 = 0
Vì \(\hept{\begin{cases}9\left(x-1\right)^2\ge0\forall x\\\left(y-3\right)^2\ge0\forall y\\2\left(z+1\right)^2\ge0\forall z\end{cases}}\Rightarrow9\left(x-1\right)^2+\left(y-3\right)^2+2\left(z+1\right)^2\ge0\forall x,y,z\)
Đẳng thức xảy ra <=> \(\hept{\begin{cases}x-1=0\\y-3=0\\z+1=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=1\\y=3\\z=-1\end{cases}}\)
Vậy
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
9x2 + y2 + z2 - 36x - 16y + 10z = - 125
\(\Leftrightarrow\)9x2 - 36x + 36 + y2 - 16y + 64 + z2 + 10z + 25 = 0
\(\Leftrightarrow\) ( 3x - 6 )2 + ( y - 8 )2 + ( z + 5 )2 = 0
Từ đó suy ra x, y, z