K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 12 2015

Ta có:

\(9x^2+y^2+z^2-36x-16y+10z=-125\)

\(\Leftrightarrow\)  \(9x^2+y^2+z^2-36x-16y+10z+125=0\)

\(\Leftrightarrow\)  \(9x^2-36x+36+y^2-16y+64+z^2+10z+25=0\)

\(\Leftrightarrow\)  \(9\left(x-2\right)^2+\left(y-8\right)^2+\left(z+5\right)^2=0\)

Mà   \(\left(x-2\right)^2;\left(y-8\right)^2;\left(z+5\right)^2\ge0\)  với mọi   \(x;y;z\)

nên   \(\left(x-2\right)^2=0;\left(y-8\right)^2=0;\left(z+5\right)^2=0\)

\(\Leftrightarrow\)   \(x-2=0;y-8=0;z+5=0\)

\(\Leftrightarrow\)   \(x=2;y=8;z=-5\)

Vậy,   \(xy+yz+xz=-34\)

18 tháng 12 2014

9x2 + y2 + z2 - 36x - 16y + 10z = - 125

\(\Leftrightarrow\)9x2 - 36x + 36 + y2 - 16y + 64 + z2 + 10z + 25 = 0

\(\Leftrightarrow\) ( 3x - 6 )2 + ( y - 8 )2 + ( z + 5 )2 = 0

Từ đó suy ra x, y, z

 

20 tháng 3 2017

Đáp án là -13 bn ơi

19 tháng 3 2017

Áp dụng BĐT (a - b)² ≥ 0 → a² + b² ≥ 2ab ta có: 

+) x² + y² ≥ 2xy 

x² + 1 ≥ 2x 

+) y² + z² ≥ 2yz 

y² + 1 ≥ 2y 

+) z² + x² ≥ 2xz 

z² + 1 ≥ 2z 

=> 2 ( x+ y2 + z2 ) ≥ 2( xy + yz + xz )
cộng các BĐT trên ta có
3( x2 + y2 + z2 ) + 3 ≥ 2( x + y + z + xy + yz + xz)
=> GTNN của P = 3 khi và chỉ khi x=y=z=1

9 tháng 3 2016

giúp mk vs

20 tháng 3 2016

- x.y=-2; xz=3 =>x2yz=-2.3=-6

=>x2=\(\frac{-6}{yz}\) = -6/-4=2/3
- xz=3;yz=-4 => z2xy=3.-4=-12

=> z2=-12/xy=-12/-2=6
- xy=-2;yz=-4=>y2xz=-2.-4=8

=>y^2=8/xz=8/-4=-2

====>x2+y2+z2=2/3+6-2=14/3
 

4 tháng 1 2021

Ta có :

( x - 1 )2\(\ge\)0 => x2 - 2x + 1 \(\ge\)0 => x2 + 1 \(\ge\)2x

Tương tự ta có : y2 + 1 \(\ge\)2y ; z2 + 1 \(\ge\)2z

=> x2 + y2 + z2 + 3 \(\ge\)2 ( x + y + z ) (1)

Lại có : ( x + y + z )2 \(\ge\)0 => x2 + y2 + z2 \(\ge\)2 ( xy + yz + zx ) (2)

Lấy (1) + (2) => 2 ( x2 + y2 + z2 ) + 3 \(\ge\)2 ( x + y + z + xy + yz + zx )

<=> 2 ( x2 + y2 + z2 ) \(\ge\)2.3033 - 3 = 6063

<=> x2 + y2 + z\(\ge\)3031,5 > 2021 ( đpcm )

2 tháng 11 2016

Đề bài sai ngay từ giả thiết x,y,z nguyên dương.

Rõ ràng khi đó x,y,z > 0 => \(xy+yz+zx>0\)(đẳng thức không xảy ra)

Vậy đề đúng phải là x,y,z nguyên dương thỏa mãn \(xy+yz+zx=1\)

Khi đó ta giải như sau : 

\(x^2+1=x^2+xy+yz+zx=\left(x+y\right)\left(x+z\right)\)

\(y^2+1=y^2+xy+yz+zx=\left(y+x\right)\left(y+z\right)\)

\(z^2+1=z^2+xy+yz+zx=\left(z+x\right)\left(z+y\right)\)

\(\Rightarrow A=\left[\left(x+y\right)\left(y+z\right)\left(z+x\right)\right]^2\) là bình phương của một số nguyên.