K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
27 tháng 1 2021

\(A=\dfrac{1}{z}\left(\dfrac{x+y}{xy}\right)=\dfrac{1}{z}\left(\dfrac{1}{x}+\dfrac{1}{y}\right)\ge\dfrac{4}{z\left(x+y\right)}\ge\dfrac{16}{\left(x+y+z\right)^2}=16\)

Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(\dfrac{1}{4};\dfrac{1}{4};\dfrac{1}{2}\right)\)

10 tháng 9 2017

x+y+z=(x+y)+z=1 => [(x+y)+z]2=1

Ta có: \(1=\left[\left(x+y\right)+z\right]^2\ge4\left(x+y\right)z\)

Mặt khác: \(\left(x+y\right)^2\ge4xy\)

Suy ra 1.(x+y)2 \(\ge\)4(x+y)z.4xy<=>(x+y)2\(\ge\)16xyz(x+y) \(\Leftrightarrow x+y\ge16xyz\)\(\Leftrightarrow A=\frac{x+y}{xyz}\ge16\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}x+y=z\\x=y\end{cases}}\) kết hợp với điều kiện ban đầu x+y+z=1,giải hệ ra <=> x=y=1/4; z=1/2

Vậy minA=16 khi x=y=1/4; z=1/2

12 tháng 3 2018

a) x+y+z=1

⇔[(x+y)+z]2=1

Áp dụng BĐT cô si cho 2 số ta có

(a+b)+c ≥ 2\(\sqrt{\left(a+b\right)c}\)

⇔[(a+b)+c)]2 \(\ge4\left(a+b\right)c\)

⇔1 ≥ 4(a+b)c

nhân cả 2 vế cho số dương \(\dfrac{x+y}{xyz}\) được

\(\dfrac{x+y}{xyz}\ge\dfrac{4\left(x+y\right)^2c}{xyz}\)

\(\dfrac{x+y}{xyz}\ge\dfrac{4z.4xy}{xyz}=16\)

Min A =16 khi \(\left\{{}\begin{matrix}x+y=z\\x=y\\x+z+y=1\end{matrix}\right.\Leftrightarrow x=y=\dfrac{1}{4};z=\dfrac{1}{2}}\)

19 tháng 8 2016

Ta có : \(1=\left[\left(x+y\right)+z\right]^2\ge4z\left(x+y\right)\) 

Mặt khác : \(\left(x+y\right)^2\ge4xy\)

Nhân hai bđt trên theo vế được \(\left(x+y\right)^2\ge16xyz\left(x+y\right)\)

\(\Rightarrow x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16\)

Vậy giá trị nhỏ nhất của biểu thức bằng 16 \(\Leftrightarrow\begin{cases}x=y\\x+y=z\\x+y+z=1\end{cases}\)

\(\Leftrightarrow\begin{cases}x=y=\frac{1}{4}\\z=\frac{1}{2}\end{cases}\)

19 tháng 8 2016

Có : \(x+y+z=\left(x+y\right)+z=1\)

Áp dụng BĐT Cauchy với hai số dương x + y với z có:

\(1=\left(x+y\right)+z\ge2\sqrt{\left(x+y\right)z}\Rightarrow1^2\ge4\left(x+y\right)z\)

Hay: \(1\ge4\left(x+y\right)z\Rightarrow x+y\ge4\left(x+y\right)^2z\rightarrow\left(x+y>0\right)\)

Có : \(\left(x+y\right)^2\ge4xy\)

\(\Rightarrow x+y\ge16xyz\Rightarrow\frac{x+y}{xyz}\ge16\)

Dấu "=" xãy ra khi x = y,x + y + z = 1 , x+y/xyz = 16

Giải ra ta được  x = y = 1/4 , z = 1/2

24 tháng 5 2022

\(x,y,z>0\)

Áp dụng BĐT Caushy cho 3 số ta có:

\(x^3+y^3+z^3\ge3\sqrt[3]{x^3y^3z^3}=3xyz\ge3.1=3\)

\(P=\dfrac{x^3-1}{x^2+y+z}+\dfrac{y^3-1}{x+y^2+z}+\dfrac{z^3-1}{x+y+z^2}\)

\(=\dfrac{\left(x^3-1\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)}+\dfrac{\left(y^3-1\right)^2}{\left(x+y^2+z\right)\left(y^3-1\right)}+\dfrac{\left(z^3-1\right)^2}{\left(x+y+z^2\right)\left(x^3-1\right)}\)

Áp dụng BĐT Caushy-Schwarz ta có:

\(P\ge\dfrac{\left(x^3+y^3+z^3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}\)

\(\ge\dfrac{\left(3-3\right)^2}{\left(x^2+y+z\right)\left(x^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)+\left(x+y^2+z\right)\left(y^3-1\right)}=0\)

\(P=0\Leftrightarrow x=y=z=1\)

Vậy \(P_{min}=0\)

10 tháng 2 2021

Áp dụng BĐT Cô-si cho 2 số thực dương \(\dfrac{xy}{z}\) và \(\dfrac{yz}{x}\) có:

\(\dfrac{xy}{z}+\dfrac{yz}{x}\) \(\ge\) 2\(\sqrt{\dfrac{xy}{z}\cdot\dfrac{yz}{x}}\) = 2\(\sqrt{y^2}\) = 2y (1)

Tương tự: \(\dfrac{yz}{x}+\dfrac{zx}{y}\ge2z\) (2)

\(\dfrac{xy}{z}+\dfrac{zx}{y}\ge2x\) (3)

Từ (1); (2); (3)

\(\Rightarrow\) \(\dfrac{2xy}{z}+\dfrac{2yz}{x}+\dfrac{2zx}{y}\ge2x+2y+2z\)

\(\Leftrightarrow\) 2\(\left(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\right)\) \(\ge\) 2(x + y + z)

\(\Leftrightarrow\) \(\dfrac{xy}{z}+\dfrac{yz}{x}+\dfrac{zx}{y}\ge x+y+z=10\)

Hay PMin = 10 

Dấu "=" xảy ra \(\Leftrightarrow\) x = y = z = \(\dfrac{10}{3}\)

Vậy ...

Chúc bn học tốt!

 

Toán hóc búa nè cho mấy ckế thoải mái mà làm, ai làm đúng thì tui tick cho thật nhiều:Bài 1,cho a,b,c là các số dương . Tìm GTNN của :a,\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b};\)b,\(B=\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{a+c}+\frac{a+c}{b}+\frac{c}{a+b}+\frac{a+b}{c}\)Bài 2: a,cho các số dương x,y,z có tổng bằng 1. Tìm GTNN của:                            \(A=\frac{x+y}{xyz}\)         b, cho các số dương x,y,z,t có tổng bằng 2. Tìm...
Đọc tiếp

Toán hóc búa nè cho mấy ckế thoải mái mà làm, ai làm đúng thì tui tick cho thật nhiều:

Bài 1,cho a,b,c là các số dương . Tìm GTNN của :

a,\(A=\frac{a}{b+c}+\frac{b}{c+a}+\frac{c}{a+b};\)

b,\(B=\frac{a}{b+c}+\frac{b+c}{a}+\frac{b}{a+c}+\frac{a+c}{b}+\frac{c}{a+b}+\frac{a+b}{c}\)

Bài 2: a,cho các số dương x,y,z có tổng bằng 1. Tìm GTNN của:

                            \(A=\frac{x+y}{xyz}\)

         b, cho các số dương x,y,z,t có tổng bằng 2. Tìm GTNN của 

                           \(B=\frac{\left(x+y+z\right)\left(x+y\right)}{xyzt}\)

Bài 3 : Tìm GTNN của \(A=\frac{1}{xy}+\frac{1}{yz}+\frac{1}{zx}\)biết rằng \(x,y,z\) là các số dương và \(x^2+y^2+z^2\le3\)

Bài 4:  a, Tìm GTLN của tích xy với x,y là các số dương, \(y\ge6\)và \(x+y=100\)

          b, Tìm GTLN của tích xyz với x,y,z là các số dương,\(z\ge6\)và \(x+y+z=100\)

2
18 tháng 7 2016

Bài 1:a,

A=a/b+c + b/a+c + c/a+b = a^2/ab+ac + b^2/ab+bc + c^2/ac+bc 

Áp dụng BĐT dạng Angel : A > hoặc = (a+b+c)^2/ab+ac+ab+bc+ac+bc=(a+b+c)^2/2(ab+bc+ca) > hoặc = 3(ab+bc+ca)/2(ab+bc+ca)=3/2 

b,làm tt câu a 

18 tháng 7 2016

câu 1 của bạn chính sác đấy