K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 6 2023

Áp dụng BĐT Cauchy-Schwarz ta có:
`B>=(1+2+3)^2/(x+y+z)=36/6=6`

Dấu "=" xảy ra `<=>(x;y;z)=(3/7;12/7;27/7)`

Vậy `B_(min)=6<=>(x;y;z)=(3/7;12/7;27/7)`

18 tháng 1 2023

Q=3x+9y+15z+x+x4​+y+y9​+z+z25​

\ge 108+2.2+2.3+2.5=128≥108+2.2+2.3+2.5=128

Dấu "=" xảy ra khi x+3y+5z=36, x=\dfrac{4}x, y=\dfrac{9}y, z=\dfrac{25}z\Rightarrow x=2,y=3,z=5x+3y+5z=36,x=x4​,y=y9​,z=z25​⇒x=2,y=3,z=5

bạn tham khảo nhé

AH
Akai Haruma
Giáo viên
15 tháng 5 2022

Lời giải:
Áp dụng BĐT Cô-si:
$\frac{1}{x+1}+\frac{x+1}{4}\geq 1$

$\frac{1}{y+1}+\frac{y+1}{4}\geq 1$

$\frac{1}{1+z}+\frac{1+z}{4}\geq 1$

Cộng theo vế:
$A+\frac{x+y+z+3}{4}\geq 3$

$\Rightarrow A\geq 3-\frac{x+y+z+3}{4}\geq 3-\frac{3+3}{4}=\frac{3}{2}$

Vậy $A_{\min}=\frac{3}{2}$ khi $x=y=z=1$

15 tháng 5 2022

Dự đoán điểm rơi \(x=y=z=1\)

Khi đó \(\dfrac{1}{1+x}=\dfrac{1}{1+1}=\dfrac{1}{2}\) và \(1+x=1+1=2\)

Ta cần ghép Cô-si  \(\dfrac{1}{1+x}\) với \(k\left(1+x\right)\) sao cho đảm bảo đấu "=" xảy ra khi \(x=1\)

Đồng thời khi Cô-si 2 số dương trên thì dấu "=" xảy ra khi \(\dfrac{1}{1+x}=k\left(1+x\right)\Leftrightarrow\dfrac{1}{2}=k.2\Leftrightarrow k=\dfrac{1}{4}\)

Như vậy, áp dụng BĐT Cô-si cho 2 số dương \(\dfrac{1}{1+x}\) và \(\dfrac{1+x}{4}\), ta có \(\dfrac{1}{1+x}+\dfrac{1+x}{4}\ge2\sqrt{\dfrac{1}{1+x}.\dfrac{1+x}{4}}=1\)

Tương tự, ta có \(\dfrac{1}{1+y}+\dfrac{1+y}{4}\ge1\) và \(\dfrac{1}{1+z}+\dfrac{1+z}{4}\ge1\)

Cộng vế theo vế của các BĐT vừa tìm được, ta có \(A+\dfrac{x+y+z+3}{4}\ge3\)\(\Leftrightarrow A\ge3-\dfrac{x+y+z+3}{4}\)

Lại có \(x+y+z\le3\) nên \(A\ge3-\dfrac{x+y+z+3}{4}\Leftrightarrow A\ge3-\dfrac{3+3}{4}=\dfrac{3}{2}\)

Vậy GTNN của A là \(\dfrac{3}{2}\) khi \(x=y=z=1\)

14 tháng 5 2022

-Sửa đề: x,y,z>0. Tìm min của \(A=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\)

-Áp dụng BDDT Caushy-Schwarz ta có:

\(A=\dfrac{1}{x}+\dfrac{1}{y}+\dfrac{1}{z}\ge\dfrac{\left(1+1+1\right)^2}{x+y+z}=\dfrac{9}{x+y+z}\ge\dfrac{9}{3}=3\)

\(A_{min}=3\Leftrightarrow x=y=z=1\)

14 tháng 5 2022

thank nha

 

Tôi bổ sung đề bài : Cho x,y,z >0 và x+y+z=1 tìm min của x^2(y+z)/yz + y^2(x+z)/xz + z^2(x+y)/xy?

                                  BĐT cô si: x²/z + z ≥ 2x và x²/y + y ≥ 2x => x²/z + x²/y + z+y ≥ 4x 
                                  => x²(y+z)/yz + y+z ≥ 4x 
                                  tương tự: y²(x+z)/xz + x+z ≥ 4y 
                                  và z²(x+y)/xy + x+y ≥ 4z 
                                  
                                  cộng lại hết: x²(y+z)/yz + y²(x+z)/xz + z²(x+y)/xy + 2(x+y+z) ≥ 4(x+y+z) 
                                  => x²(y+z)/yz + y²(x+z)/xz + z²(x+y)/xy ≥ 2(x+y+z) = 2 
                                  min = 2, đạt khi x = y = z = 1/3 
                                                                                         ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

5 tháng 6 2019

Bổ sung chi vậy bn

Có; \(\frac{x}{y+z}+\frac{y}{x+z}+\frac{z}{x+y}=\frac{x^2}{xy+xz}+\frac{y^2}{xy+yz}+\frac{z^2}{xz+yz}\ge\frac{\left(x+y+z\right)^2}{2\left(xy+xz+yz\right)}\ge\frac{3\left(xy+yz+xz\right)}{2\left(xy+yz+xz\right)}=\frac{3}{2}\)

Vậy Min A=3/2

9 tháng 4 2017

Đặt A=x^4+y^4+z^4 ,P=x^2+y^2+z^2

Ta có A=(x^2)^2+(y^2)^2+(z^2)^2

Áp dụng bđt Cauchy-Schwarz ta có

3A=[(x^2)^2+(y^2)^2+(z^2)^2](1^2+1^2+1^2) >/ (x^2+y^2+z^2)^2=> A >/ (x^2+y^2+z^2)^2/3

Áp dụng bđt Cauchy-Schwarz lần 2 

3P=(x^2+y^2+z^2)(1^2+1^2+1^2) >/ (x+y+z)^2=> P >/  (x+y+z)^2/3 >/ 2^2/3 >/ 4/3 

=> A >/ (4/3)^2/3=16/27

Đẳng thức xảy ra <=> x=y=z=2/3

9 tháng 10 2017

ý em là bài này hả ?

Cho các số dương x,y,z thoã mãn x+y+z=3 Tìm GTNN của 2(x^3+y^3+z^3)-(x^2+y^2+z^2)+2...

bài làm

ta có : x^3+y^3+z^3-3xyz=(x+y+z)(x^2+y^2+z^2-xy-... bạn tự chứng minh nha, khai triển vế phải ra là xong :D) 
sau đó áp dụng điều kiện x+y+z=3 rồi thay vào biểu thức ban đầu ta có 
BT= 5(x^2+y^2+z^2)-6(xy+yz+zx) + 8xyz +3 
= 8(x^2+y^2+z^2)-3(x+y+z)^2 + 8xyz +3 
sau đó bạn áp dụng BDT xyz>=(x+y-z)(z+x-y)(y+z-x) sau đó thế x+y+z=3 và khai triển ra ta được 
xyz>=(3-2z)(3-2y)(3-2z)=27-18(x+y+z)+1... -8xyz 
thay x+y+z=3 ta được: 
9xyz >=12(xy+yz+zx)-27 
>> BT + xyz >= 8(x^2+y^2+z^2)-27+3+ 12(xy+yz+zx)-27=2(x^2+y^2+z^2)+6(x+y+z)^... 
lại có 3(x^2+y^2+z^2)>=(x+y+z)^2 ( BDT Bunhiacopxki) >> (x^2+y^2+z^2)>=3 
27xyz<=(x+y+z)^3>> xyz<=1 
vậy BT + 1>= BT +xyz >= 6+ 54-51 <> BT >=8. ĐT khi x=y=z=1 

9 tháng 10 2017

đây có đúng là thầy không vậy 

2 tháng 3 2023

`P=x^3/(x+y)+y^3/(y+z)+z^3/(z+x)`

`=x^4/(x^2+xy)+y^4/(y^2+yz)+z^4/(z^2+zx)`

Ad bđt cosi-swart:

`P>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+xy+yz+zx)`

Mà `xy+yz+zx<=x^2+y^2+z^2)`

`=>P>=(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2))=(x^2+y^2+z^2)/2=3/2`

Dấu "=" xảy ra khi `x=y=z=1`

`Q=(x^3+y^3)/(x+2y)+(y^3+z^3)/(y+2z)+(z^3+x^3)/(z+2x)`

`Q=(x^3/(x+2y)+y^3/(y+2z)+z^3/(z+2x))+(y^3/(x+2y)+z^3/(y+2z)+x^3/(z+2x))`

`Q=(x^4/(x^2+2xy)+y^4/(y^2+2yz)+z^4/(z^2+2zx))+(y^4/(xy+2y^2)+z^4/(yz+2z^4)+x^4/(xz+2x^2))`

Áp dụng BĐT cosi-swart ta có:

`Q>=(x^2+y^2+z^2)^2/(x^2+y^2+z^2+2xy+2yz+2zx)+(x^2+y^2+z^2)^2/(2(x^2+y^2+z^2)+xy+yz+zx))`

Mà`xy+yz+zx<=x^2+y^2+z^2`

`=>Q>=(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))+(x^2+y^2+z^2)^2/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2)^2)/(3(x^2+y^2+z^2))=(2(x^2+y^2+z^2))/3=2`

Dấu "=" xảy ra khi `x=y=z=1.`