Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(1,=\left(a+b\right)^3-3ab\left(a+b\right)+c^3-3abc\\ =\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\\ =\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\\ 2,=a^{10}-a+a^5-a^2+a^2+a+1\\ =a\left(a^3-1\right)\left(a^3+1\right)+a^2\left(a^3-1\right)+\left(a^2+a+1\right)\\ =\left(a-1\right)\left(a^2+a+1\right)\left(a^4+a^2+a\right)+\left(a^2+a+1\right)\\ =\left(a^2+a+1\right)\left[\left(a-1\right)\left(a^4+a^2+a\right)+1\right]\\ =\left(a^2+a+1\right)\left(a^5-a^4+a^3-a+1\right)\)
\(3,=a^8+a^7-a^7+a^6-a^6+a^5-a^5+a^4-a^4+a^3-a^3+a^2-a^2+a+1\\ =a^6\left(a^2+a+1\right)-a^5\left(a^2+a+1\right)+a^3\left(a^2+a+1\right)-a^2\left(a^2+a+1\right)+\left(a^2+a+1\right)\\ =\left(a^2+a+1\right)\left(a^6-a^5+a^3-a^2+1\right)\)
\(4,=a^8+a^7-a^6+a^6+1=a^6\left(a^2+a+1\right)-\left(a^3-1\right)\left(a^3+1\right)\\ =\left(a^2+a+1\right)\left[a^6-\left(a-1\right)\left(a^3+1\right)\right]\\ =\left(a^2+a+1\right)\left(a^6-a^4-a+a^3-1\right)\)
\(5,=\left(a^{16}+2a^8b^8+b^{16}\right)-a^8b^8=\left(a^4+b^4\right)^2-\left(a^4b^4\right)^2\\ =\left(a^4+b^4-a^4b^4\right)\left(a^4+b^4+a^4b^4\right)\\ 6,=\left(a^2+8a+7\right)\left(a^2+8a+15\right)+15\\ =\left(a^2+8a+11\right)^2-16+15\\ =\left(a^2+8a+11\right)^2-1\\ =\left(a^2+8a+10\right)\left(a^2+8a+12\right)\)
Câu 7 mình làm riêng nhé
\(7,=8x^3y^2+4x^2y^3+y^2z^3-y^3z^2+x^2z^2\left(2x+z\right)\\ =\left(8x^3y^2+y^2z^3\right)+\left(4x^2y^3-y^3z^2\right)+x^2z^2\left(2x+z\right)\\ =y^2\left(2x+z\right)\left(4x^2-2xz+z^2\right)+y^3\left(2x-z\right)\left(2x+z\right)+x^2z^2\left(2x+z\right)\\ =\left(2x+z\right)\left(4x^2y^2-2xyz+y^2z^2+2xy^3-2y^3z+x^2z^2\right)\)
Từ đây chịu thôi ;-;
Ta có:
\(x+y+z=0\)
\(\Rightarrow x+y=-z\)
Ta lại có:
\(x^7+y^7\)
\(=\left(x^3+y^3\right)\left(x^4+y^4\right)-x^4y^x-x^3y^4\)
\(=\left(x^3+y^3\right)\left(x^4+y^4\right)-x^3y^3\left(x+y\right)\)
\(=\left(x^3+y^3\right)\left(x^4+y^4\right)+x^3y^3z\) ( Thay x + y = -z )
Ta sẽ đi tính \(x^3+y^4;x^4+y^4\)
Lại có:
1/ \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=-z^3+3xyz\)
2/ \(x^2+y^2=\left(x+y\right)^2-2xy=z^2-2xy\)
\(\Rightarrow x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(z^2-2xy\right)^2-2x^2y^2=z^4-4xyz^2+2x^2y^2\)
Như vậy \(x^7+y^7=\left(-z^3+3xyz\right)\left(z^4-4xyz^2+2x^2y^2\right)+x^3y^3z\)
\(\Rightarrow x^7+y^7=-z^7+7xyz^5-14x^2y^2z^3+7x^3y^3z\)
\(\Rightarrow x^7+y^7+z^7=7xyz^5-14x^2y^2z^3+7x^3y^3z\)
\(\Rightarrow x^7+y^7+z^7=7xyz\left(z^4-2xyz^2+x^2y^2\right)\)
\(\Rightarrow x^7+y^7+z^7=7xyz\left[z^2\left(z^2-2xy\right)+x^2y^2\right]\)
Mà \(z^2-2xy=x^2+y^2\)
\(\Rightarrow x^7+y^7+z^7=7xyz\left[z^2\left(x^2+y^2\right)+x^2y^2\right]\)
\(\Rightarrow x^7+y^7+z^7=7xyz\left(x^2z^2+y^2z^2+x^2y^2\right)\)
Vì bài dài nên mình sẽ tách ra nhé.
1a. Ta có:
$x^2+y^2+z^2=(x+y+z)^2-2(xy+yz+xz)=-2(xy+yz+xz)$
$x^3+y^3+z^3=(x+y+z)^3-3(x+y)(y+z)(x+z)=-3(x+y)(y+z)(x+z)$
$=-3(-z)(-x)(-y)=3xyz$
$\Rightarrow \text{VT}=-30xyz(xy+yz+xz)(1)$
------------------------
$x^5+y^5=(x^2+y^2)(x^3+y^3)-x^2y^2(x+y)$
$=[(x+y)^2-2xy][(x+y)^3-3xy(x+y)]-x^2y^2(x+y)$
$=(z^2-2xy)(-z^3+3xyz)+x^2y^2z$
$=-z^5+3xyz^3+2xyz^3-6x^2y^2z+x^2y^2z$
$=-z^5+5xyz^3-5x^2y^2z$
$\Rightarrow 6(x^5+y^5+z^5)=6(5xyz^3-5x^2y^2z)$
$=30xyz(z^2-xy)=30xyz[z(-x-y)-xy]=-30xyz(xy+yz+xz)(2)$
Từ $(1);(2)$ ta có đpcm.
1b.
$x^4+y^4=(x^2+y^2)^2-2x^2y^2=[(x+y)^2-2xy]^2-2x^2y^2$
$=(z^2-2xy)^2-2x^2y^2=z^4+2x^2y^2-4xyz^2$
$x^3+y^3=(x+y)^3-3xy(x+y)=-z^3+3xyz$
Do đó:
$x^7+y^7=(x^4+y^4)(x^3+y^3)-x^3y^3(x+y)$
$=(z^4+2x^2y^2-4xyz^2)(-z^3+3xyz)+x^3y^3z$
$=7x^3y^3z-14x^2y^2z^3+7xyz^5-z^7$
$\Rightarrow \text{VT}=7x^3y^3z-14x^2y^2z^3+7xyz^5$
$=7xyz(x^2y^2-2xyz^2+z^4)$
$=7xyz(xy-z^2)$
$=7xyz[xy+z(x+y)]^2=7xyz(xy+yz+xz)^2$
$=7xyz[x^2y^2+y^2z^2+z^2x^2+2xyz(x+y+z)]$
$=7xyz(x^2y^2+y^2z^2+z^2x^2)$ (đpcm)
bn gõ bài trong công thức trực quan ik, khó nhìn lắm, ko làm đc
1). x2y2(y-x)+y2z2(z-y)-z2x2(z-x)
2)xyz-(xy+yz+xz)+(x+y+z)-1
3)yz(y+z)+xz(z-x)-xy(x+y)
5)y(x-2z)2+8xyz+x(y-2z)2-2z(x+y)2
6)8x3(y+z)-y3(z+2x)-z3(2x-y)
7) (x2+y2)3+(z2-x2)3-(y2+z2)3
Đề sai mình sửa lại cho bạn :cho x+y+z =0 CMR:\(x^7+y^7+z^7=7xyz\left(xy+yz+xz\right)^2\)
đặt x+y+z =a , xy+yz+xz =b ,xyz =c
\(x^7+y^7+z^7=a^7-7a^5b+14a^3b^2+7a^4c-7ab^3-21ab^2c+7b^2c+7ac^2\)(1)
mà a= x+y+z =0 ,thay b = xy+yz+xz ,c =xyz vào (1)
\(x^7+y^7+z^7=7xyz\left(xy+yz+xz\right)^2\) (dfcm)