K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2018

Ta có:

\(x+y+z=0\)

\(\Rightarrow x+y=-z\)

Ta lại có:

\(x^7+y^7\)

\(=\left(x^3+y^3\right)\left(x^4+y^4\right)-x^4y^x-x^3y^4\)

\(=\left(x^3+y^3\right)\left(x^4+y^4\right)-x^3y^3\left(x+y\right)\)

\(=\left(x^3+y^3\right)\left(x^4+y^4\right)+x^3y^3z\) ( Thay x + y = -z )

Ta sẽ đi tính \(x^3+y^4;x^4+y^4\)
Lại có​:

1/ \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=-z^3+3xyz\)

2/ \(x^2+y^2=\left(x+y\right)^2-2xy=z^2-2xy\)

\(\Rightarrow x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(z^2-2xy\right)^2-2x^2y^2=z^4-4xyz^2+2x^2y^2\)

Như vậy \(x^7+y^7=\left(-z^3+3xyz\right)\left(z^4-4xyz^2+2x^2y^2\right)+x^3y^3z\)

\(\Rightarrow x^7+y^7=-z^7+7xyz^5-14x^2y^2z^3+7x^3y^3z\)

\(\Rightarrow x^7+y^7+z^7=7xyz^5-14x^2y^2z^3+7x^3y^3z\)

\(\Rightarrow x^7+y^7+z^7=7xyz\left(z^4-2xyz^2+x^2y^2\right)\)

\(\Rightarrow x^7+y^7+z^7=7xyz\left[z^2\left(z^2-2xy\right)+x^2y^2\right]\)

\(z^2-2xy=x^2+y^2\)

\(\Rightarrow x^7+y^7+z^7=7xyz\left[z^2\left(x^2+y^2\right)+x^2y^2\right]\)

\(\Rightarrow x^7+y^7+z^7=7xyz\left(x^2z^2+y^2z^2+x^2y^2\right)\)

26 tháng 11 2017

bn gõ bài trong công thức trực quan ik, khó nhìn lắm, ko làm đc

26 tháng 11 2017

1). x2y2(y-x)+y2z2(z-y)-z2x2(z-x)

2)xyz-(xy+yz+xz)+(x+y+z)-1

3)yz(y+z)+xz(z-x)-xy(x+y)

5)y(x-2z)2+8xyz+x(y-2z)2-2z(x+y)2

6)8x3(y+z)-y3(z+2x)-z3(2x-y)

7) (x2+y2)3+(z2-x2)3-(y2+z2)3

NV
26 tháng 12 2022

\(x^2+y^2=\left(x+y\right)^2-2xy=6\)

\(x^3+y^3=\left(x+y\right)^3-3xy.\left(x+y\right)=14\)

\(x^4+y^4=\left(x^2+y^2\right)^2-2\left(xy\right)^2=34\)

\(\Rightarrow x^7+y^7=\left(x^3+y^3\right)\left(x^4+y^4\right)-\left(xy\right)^3\left(x+y\right)=478\)

26 tháng 12 2022

loading...\(x2+y2=(x+y)2−2xy=6\)

\(x3+y3=(x+y)3−3xy.(x+y)=14\)

\(x4+y4=(x2+y2)2−2(xy)2=34\)

\(⇒x7+y7=(x3+y3)(x4+y4)−(xy)3(x+y)=478\)