Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có \(x^2+y^2=1\Leftrightarrow\left(x+y\right)^2=2xy+1\)
Từ đó \(P=\dfrac{\left(x+y\right)^2}{x+y+1}\). Đặt \(x+y=t\left(t\ge0\right)\). Vì \(x+y\le\sqrt{2\left(x^2+y^2\right)}=2\) nên \(t\le\sqrt{2}\). ĐTXR \(\Leftrightarrow x=y=\dfrac{1}{\sqrt{2}}\). Ta cần tìm GTLN của \(P\left(t\right)=\dfrac{t^2}{t+1}\) với \(0\le t\le\sqrt{2}\).
Giả sử có \(0\le t_1\le t_2\le\sqrt{2}\). Ta có BDT luôn đúng \(\left(t_2-t_1\right)\left(t_2+t_1+t_2t_1\right)\ge0\) \(\Leftrightarrow t_2^2-t_1^2+t_2^2t_1-t_2t_1^2\ge0\) \(\Leftrightarrow t_1^2\left(t_2+1\right)\le t_2^2\left(t_1+1\right)\) \(\Leftrightarrow\dfrac{t_1^2}{t_1+1}\le\dfrac{t_2^2}{t_2+1}\) \(\Leftrightarrow P\left(t_1\right)\le P\left(t_2\right)\). Như vậy với \(0\le t_1\le t_2\le\sqrt{2}\) thì \(P\left(t_1\right)\le P\left(t_2\right)\). Do đó P là hàm đồng biến. Vậy GTLN của P đạt được khi \(t=\sqrt{2}\) hay \(x=y=\dfrac{1}{\sqrt{2}}\), khi đó \(P=2\sqrt{2}-2\)
Lời giải:
$P=\frac{2xy+1}{x+y+1}=\frac{2xy+x^2+y^2}{x+y+1}=\frac{(x+y)^2}{x+y+1}$
$=\frac{a^2}{a+1}$ với $x+y=a$
Áp dụng BĐT AM-GM:
$1=x^2+y^2\geq \frac{(x+y)^2}{2}=\frac{a^2}{2}$
$\Rightarrow a^2\leq 2\Rightarrow a\leq \sqrt{2}$
$P=\frac{a^2}{a+1}=\frac{a}{1+\frac{1}{a}}$
Vì $a\leq \sqrt{2}\Rightarrow 1+\frac{1}{a}\geq 1+\frac{1}{\sqrt{2}}=\frac{2+\sqrt{2}}{2}$
$\Rightarrow P\leq \frac{\sqrt{2}}{\frac{2+\sqrt{2}}{2}}=-2+2\sqrt{2}$
Vậy $P_{\max}=-2+2\sqrt{2}$ khi $x=y=\frac{1}{\sqrt{2}}$
Ta có: 2 x 2 + 1 2 ≥ 2 x ; 2 y 2 + 1 2 ≥ 2 y và x 2 + y 2 ≥ 2 x y
Cộng vế với vế các BĐT trên ta được:
3 x 2 + y 2 + 1 ≥ 2 x + y + x y = 5 2
=> A = x 2 + y 2 ≥ 1 2
Từ đó tìm được A m i n = 1 2 <=> x = y = 1 2
\(x+\sqrt{x+yz}=x+\sqrt{x\left(x+y+z\right)+yz}=x+\sqrt{x^2+yz+x\left(z+y\right)}\)
\(\ge x+\sqrt{2\sqrt{x^2yz}+x\left(y+z\right)}=x+\sqrt{x\cdot2\sqrt{yz}+x\left(y+z\right)}=x+\sqrt{x\left(y+z+2\sqrt{yz}\right)}\)
\(=x+\sqrt{x\left(\sqrt{y}+\sqrt{z}\right)^2}=x+\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)\)
\(\Rightarrow\frac{x}{x+\sqrt{x+yz}}\le\frac{x}{x+\sqrt{x}\left(\sqrt{y}+\sqrt{z}\right)}=\frac{\sqrt{x}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}\)
tương tự :
\(\frac{y}{y+\sqrt{y+xz}}\le\frac{\sqrt{y}}{\sqrt{y}+\sqrt{x}+\sqrt{z}}\)
\(\frac{z}{z+\sqrt{z+xy}}\le\frac{\sqrt{z}}{\sqrt{z}+\sqrt{x}+\sqrt{y}}\)
cộng vế theo vế ta được
\(\frac{x}{x+\sqrt{x+yz}}+\frac{y}{y+\sqrt{y+zx}}+\frac{z}{z+\sqrt{z+xy}}\le\frac{\sqrt{x}+\sqrt{y}+\sqrt{z}}{\sqrt{x}+\sqrt{y}+\sqrt{z}}=1\)
dấu "=" xảy tra khi x=y=z=1/3
1.
\(5=3xy+x+y\ge3xy+2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+5\right)\le0\Rightarrow xy\le1\)
\(P=\dfrac{\left(x+1\right)\left(x^2+1\right)+\left(y+1\right)\left(y^2+1\right)}{\left(x^2+1\right)\left(y^2+1\right)}-\sqrt{9-5xy}\)
\(P=\dfrac{\left(x+y\right)^3-3xy\left(x+y\right)+\left(x+y\right)^2-2xy+x+y+2}{x^2y^2+\left(x+y\right)^2-2xy+1}-\sqrt{9-5xy}\)
Đặt \(xy=a\Rightarrow0< a\le1\)
\(P=\dfrac{\left(5-3a\right)^3-3a\left(5-3a\right)+\left(5-3a\right)^2-2a+5-3a+2}{a^2+\left(5-3a\right)^2-2a+1}-\sqrt{9-5a}\)
\(P=\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{2}.2\sqrt{9-5a}\)
\(P\ge\dfrac{-27a^3+153a^2-275a+157}{10a^2-32a+26}-\dfrac{1}{4}\left(4+9-5a\right)\)
\(P\ge\dfrac{-29a^3+161a^2-277a+145}{4\left(5a^2-16a+13\right)}=\dfrac{\left(1-a\right)\left(29a^2-132a+145\right)}{4\left(5a^2-16a+13\right)}\)
\(P\ge\dfrac{\left(1-a\right)\left[29a^2+132\left(1-a\right)+13\right]}{4\left(5a^2-16a+13\right)}\ge0\)
\(P_{min}=0\) khi \(a=1\) hay \(x=y=1\)
Hai phân thức của P rất khó làm gọn bằng AM-GM hoặc Cauchy-Schwarz (nó hơi chặt)
2.
Đặt \(A=9^n+62\)
Do \(9^n⋮3\) với mọi \(n\in Z^+\) và 62 ko chia hết cho 3 nên \(A⋮̸3\)
Mặt khác tích của k số lẻ liên tiếp sẽ luôn chia hết cho 3 nếu \(k\ge3\)
\(\Rightarrow\) Bài toán thỏa mãn khi và chỉ khi \(k=2\)
Do tích của 2 số lẻ liên tiếp đều không chia hết cho 3, gọi 2 số đó lần lượt là \(6m-1\) và \(6m+1\)
\(\Leftrightarrow\left(6m-1\right)\left(6m+1\right)=9^n+62\)
\(\Leftrightarrow36m^2=9^n+63\)
\(\Leftrightarrow4m^2=9^{n-1}+7\)
\(\Leftrightarrow\left(2m\right)^2-\left(3^{n-1}\right)^2=7\)
\(\Leftrightarrow\left(2m-3^{n-1}\right)\left(2m+3^{n-1}\right)=7\)
Pt ước số cơ bản, bạn tự giải tiếp
\(\sqrt{4x+2\sqrt{x}+1}\le\sqrt{4x+\dfrac{1}{2}\left(2^2+x\right)+1}=\sqrt{\dfrac{9x}{2}+3}\)
\(=\dfrac{1}{\sqrt{21}}.\sqrt{21}.\sqrt{\dfrac{9x}{2}+3}\le\dfrac{1}{2\sqrt{21}}\left(21+\dfrac{9x}{2}+3\right)=\dfrac{1}{2\sqrt{21}}\left(\dfrac{9x}{2}+24\right)\)
Tương tự và cộng lại:
\(A\le\dfrac{1}{2\sqrt{21}}\left(\dfrac{9}{2}\left(x+y+z\right)+72\right)=3\sqrt{21}\)
\(A_{max}=3\sqrt{21}\) khi \(x=y=z=4\)
\(A=1\sqrt{4x+2\sqrt{x}+1}+1.\sqrt{4y+2\sqrt{y}+1}+1\sqrt{4z+2\sqrt{z}+1}\)
\(\le\sqrt{\left(1+1+1\right)\left(4\left(x+y+z\right)+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)+3\right)}\)
\(=\sqrt{3.\left[51+\dfrac{4\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)}{2}\right]}\)
\(\le\sqrt{3.\left[51+\dfrac{x+y+z+12}{2}\right]}\)
\(=\sqrt{189}\)
Dấu "=" xảy ra <=> x = y = z = 4
\(x+y=\sqrt{x+6}+\sqrt{y+6}\ge0\Rightarrow x+y\ge0\)
\(x+y=\sqrt{x+6}+\sqrt{y+6}\le\sqrt{2\left(x+y+12\right)}\)
\(\Rightarrow\left(x+y\right)^2\le2\left(x+y+12\right)\)
\(\Rightarrow\left(x+y+4\right)\left(x+y-6\right)\le0\)
\(\Rightarrow x+y\le6\) (do \(x+y+4>0\))
\(P_{max}=6\) khi \(x=y=3\)
\(x+y=\sqrt{x+6}+\sqrt{y+6}\)
\(\Rightarrow\left(x+y\right)^2=x+y+12+2\sqrt{\left(x+6\right)\left(y+6\right)}\ge x+y+12\)
\(\Rightarrow\left(x+y\right)^2-\left(x+y\right)-12\ge0\)
\(\Rightarrow\left(x+y+3\right)\left(x+y-4\right)\ge0\)
\(\Rightarrow x+y-4\ge0\) (do \(x+y+3>0\))
\(\Rightarrow x+y\ge4\)
\(P_{min}=4\) khi \(\left(x;y\right)=\left(-6;10\right)\) và hoán vị
Ta có: x - \(\sqrt{x+6}\) = \(\sqrt{y+6}\) - y (x; y \(\ge\) -6)
\(\Leftrightarrow\) P = x + y = \(\sqrt{x+6}+\sqrt{y+6}\)
\(\Leftrightarrow\) P2 = x + y + 12 + 2\(\sqrt{\left(x+6\right)\left(y+6\right)}\)
Áp dụng BĐT Cô-si cho 2 số ko âm x + 6 và y + 6 ta có:
\(x+y+12\ge2\sqrt{\left(x+6\right)\left(y+6\right)}\)
\(\Leftrightarrow\) P2 \(\le\) x + y + 12 + x + y + 12 = 2x + 2y + 24 = 2P + 24
\(\Leftrightarrow\) P2 - 2P - 24 \(\le\) 0
\(\Leftrightarrow\) P2 - 36 + 12 - 2P \(\le\) 0
\(\Leftrightarrow\) (P - 6)(P + 6) + 2(6 - P) \(\le\) 0
\(\Leftrightarrow\) (P - 6)(P + 4) \(\le\) 0
\(\Leftrightarrow\) \(\left[{}\begin{matrix}\left\{{}\begin{matrix}P-6\ge0\\P+4\le0\end{matrix}\right.\\\left\{{}\begin{matrix}P-6\le0\\P+4\ge0\end{matrix}\right.\end{matrix}\right.\)
\(\Leftrightarrow\) \(\left[{}\begin{matrix}-4\ge P\ge6\left(KTM\right)\\6\ge P\ge-4\left(TM\right)\end{matrix}\right.\)
\(\Rightarrow\) -4 \(\le\) P \(\le\) 6
Vậy ...
Chúc bn học tốt!
x + y = 1
tim min
1/(x^2 + y^2) + 2/(xy) -4xy