K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

Ta có:\(n=4x^2y^2-7x+7y=\left(2xy-1\right)^2+4xy-7x+7y-1>\left(2xy-1\right)^2\)

\(n=\left(2xy+1\right)^2-4xy+7y-7x-1< \left(2xy+1\right)^2\)

\(\Rightarrow\left(2xy-1\right)^2< n< \left(2xy+1\right)^2,\)mà \(n\)là số chính phương nên ta có:

\(n=\left(2xy\right)^2\Leftrightarrow4x^2y^2-7x+7y=4x^2y^2\Leftrightarrow x=y\left(đpcm\right)\)

Không mất tính tổng quát giả sử x ≥ y

⇒x²<x²+8y≤x²+8x<(x+4)²

VÌ x²+8yx²+8y là số chính phương ⇒x²+8y=(x+1)2x²+8y=(x+1)2

hoặc x²+8y=(x+2)2x²+8y=(x+2)² 

hoặc x²+8y=(x+3)²

Nếu x²+8y=(x+1)²

⇒8y=2x+1 (vô lí vì 1 bên lẻ 1 bên chẵn)

Nếu x²+8y=(x+2)²  ⇒8y=4x+4  ⇒2y=x+1

⇒[(x+1)2]²+8x  ⇒(x+12)²+8x là số chính phương.

⇒x²+34x+1=a² với a∈N

⇒(x+17)²−288=a²

        ⇒(x+17−a)(x+17+a)=288

Đến đây thì dễ rồi

Nếu x²+8y=(x+3)2 ⇒8y=6x+9x²+8y=(x+3)² 

⇒8y=6x+9 (Vô lí vì VT chẵn còn VP thì không)

Giả sử x ≤ y

Ta có: y2 ≤ y2 + 8x ≤ y2 + 8y ≤ y2 + 8y + 16 = (y + 4)2

=> y2 + 8x = (y+1)²

                      (y+2)²

                       (y+3)²

Xét TH1 : y2 + 8x = (y + 1)2

=> y2 + 8x = y2 + 2y +1

=> 8x - 2y = 1

=> 4x - y = 1212 => Loại vì x, y ∈ N*

Xét TH2: y2 + 8x = (y + 2)2

=> y2 + 8x = y2 + 4x + 4

=> 8x - 4y = 4

=> 2x - y = 1 mà x;y ∈ N* nên ta có các trường hợp sau:

Nếu x = 1 => y = 1 => x2 + 8y = 9 (TM) ; y2 + 8x = 9 (TM)

Nếu x = 2 => y = 3 => x2 + 8y = 28 (Loại)

Nếu x ≥ 3 => 2x ≥ 6 => y ≤ 5 => Loại vì x≤ y

Xét TH3 : y2 + 8x = ( y +3 )2

=> y2 + 8x = y2 + 6y + 9

=> 8x - 6y = 9

=> 4x - 3y = 4,5 => Loại vì x,y ∈ N*

Vậy (x,y) = (1;1)

cái dới không correct

17 tháng 10 2015

y lớn hơn 2 => y lẻ => y chia 4 dư 3 hoặc 1

=> y^2 chia 4 dư 1 => 2y^2 chia 4 dư 2

=> 2y^2 + 1 chia 4 dư 4

mà số chính phương chia 4 dư 0 hoặc 1=> ko phải sô chính phương

24 tháng 6 2019

#) Giải

Giả sử tồn tại x, y, z thỏa mãn đk đầu bài => 1 / x + 1 / y = 1 / z (x, y, z ≠ 0) 
=> z(x + y) = xy 
Không thể có |z| > 1 vì lúc đó z có ít nhất 1 ước nguyên tố p ≥ 2 => p phải là ước của x hoặc y, vô lý vì (x, z) = (y, z) = 1. Vậy z = -1, 1 
Với z = -1 => -(x + y) = xy => (x + 1)(y + 1) = 1 => x + 1 = -1, y + 1 = -1 
=> x = y = -2 => x, y có chung ước 2, vô lý vì (x, y) = 1 
Với z = 1 => x + y = xy => (x - 1)(y - 1) = 1 
=> x - 1 = 1 và y - 1 = 1 => x = y = 2, vô lý vì (x, y) = 1 
Vậy không tồn tại x, y, z thỏa đk bài toán 

~ Hok tốt ~

kham khảo ở đây nha

Giải toán trên mạng - Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath

vào thống kê hỏi đáp của mình nhấn zô chữ xanh trong câu trả lời này 

hc tốt ~:B~

23 tháng 4 2020

cục cứt

23 tháng 4 2020

không được chửi bậy