K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 6 2020

ta có \(\frac{a}{b}< \frac{c}{d}=>ad< bc=>ady< bcy=>ady+abx< bcy+abx\)

\(=>a\left(bx+dy\right)< b\left(ãx+cy\right)=>\frac{a}{b}< \frac{xa+yc}{xb+yd}\left(1\right)\)

ta lại có tương tự \(adx+cdy< bcx+cdy\)

\(=>d\left(ax+cy\right)< c\left(bx+dy\right)=>\frac{xa+yc}{xb+yd}< \frac{c}{d}\left(2\right)\)

từ 1 and 2 => dpcm

5 tháng 8 2019

Đừng nhầm chữ y là g nha, chữ mik xấu

Violympic toán 7

5 tháng 8 2019

Tập hợp Q các số hữu tỉ

10 tháng 7 2019

Bài 2 : Theo ví dụ trên ta có : \(\frac{a}{b}< \frac{c}{d}\)=> ad < bc

Suy ra :

\(\Leftrightarrow ad+ab< bc+ba\Leftrightarrow a(b+d)< b(a+c)\Leftrightarrow\frac{a}{b}< \frac{a+c}{b+d}\)

Mặt khác : ad < bc => ad + cd < bc + cd

\(\Leftrightarrow d(a+c)< (b+d)c\Leftrightarrow\frac{a+c}{b+d}< \frac{c}{d}\)

Vậy : ....

10 tháng 7 2019

b, Theo câu a ta lần lượt có :

\(-\frac{1}{3}< -\frac{1}{4}\Rightarrow-\frac{1}{3}< -\frac{2}{7}< -\frac{1}{4}\)

\(-\frac{1}{3}< -\frac{2}{7}\Rightarrow-\frac{1}{3}< -\frac{3}{10}< -\frac{2}{7}\)

\(-\frac{1}{3}< -\frac{3}{10}\Rightarrow-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}\)

Vậy : \(-\frac{1}{3}< -\frac{4}{13}< -\frac{3}{10}< -\frac{2}{7}< -\frac{1}{4}\)

13 tháng 6 2018

Ta có

\(\frac{yc-bz}{a}=\frac{za-xc}{b}=\frac{xb-ya}{c}=\)\(\frac{yca-bza}{a^2}=\frac{zab-xcb}{b^2}=\frac{xbc-yac}{c^2}=\)\(\frac{yca-bza+zab-xcb+xbc-yac}{a^2+b^2+c^2}=0\)

=> \(\hept{\begin{cases}yc=bz\\za=cx\\xb=ya\end{cases}}\)     <=>    \(\hept{\begin{cases}\frac{c}{z}=\frac{b}{y}\\\frac{a}{x}=\frac{c}{z}\\\frac{b}{y}=\frac{a}{x}\end{cases}\Leftrightarrow\frac{a}{x}=\frac{b}{y}=\frac{c}{z}\left(đpcm\right)}\)

18 tháng 8 2016

Ta phải giả thiết x,y,z khác không. 
gt: (yc-bz)/x=(za-xc)/y => 
(c/z-b/y)/zx^2=(a/x-c/z)/zy^2 hay: 
(c/z-b/y)/x^2=(a/x-c/z)/y^2 (*) 
mặt khác từ gt: 
(yc-bz)/x=(xb-ya)/z => 
(z/c-b/y)/yx^2=(b/y-a/x)/yz^2 hay: 
(z/c-b/y)/x^2=(b/y-a/x)/z^2 (**) 
*nếu: z/c-b/y>0 
<=>z/c>b/y 
Theo (*) ta có: 
a/x-z/c>0 
<=>a/x>z/c
=>a/x>z/c>b/y 
=>b/y-a/x<0 vô lí vì từ (**) : 
b/y-a/x>0 
*nếu: z/c-b/y<0 
<=>z/c<b/y 
Theo (*) ta có: 
a/x-z/c<0 
=>a/x<z/c
=>a/x<z/c<b/y. 
=>b/y-a/x>0. vô lí vì theo (**) : 
b/y-a/x<0 
Vậy ta phải có: 
z/c-b/y=0 
Thay vào (*) ta có: 
a/x=b/y=z/c.