Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 2:
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Ta có: xy=12
\(\Leftrightarrow12k^2=12\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=3\\y=4k=4\end{matrix}\right.\)
Trường hợp 2: k=-1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=-3\\y=4k=-4\end{matrix}\right.\)
\(x-y=-30\Rightarrow\dfrac{x}{-30}=\dfrac{1}{y}\\ y.z=-42\\ \Rightarrow\dfrac{z}{-42}=\dfrac{1}{y}\\ \Rightarrow\dfrac{x}{-30}=\dfrac{z}{-42}\)
Áp dụng TCDTSBN ta có:
\(\dfrac{x}{-30}=\dfrac{z}{-42}=\dfrac{z-x}{-42-\left(-30\right)}=\dfrac{-12}{-12}=1\)
\(\dfrac{x}{-30}=1\Rightarrow x=-30\\ \dfrac{z}{-42}=1\Rightarrow z=-42\)
\(x.y=-30\Rightarrow-30.y=-30\Rightarrow y=1\)
a.)=(x+y)^2 mà x+y=5 =>5^2=25
b.) làm như ý a.) =5^3=125
c.)=625
d.)=3125
Ta có : \(\left(x-y\right)^2=x^2-2xy+y^2=x^2-2.2+y^2\)
\(\Rightarrow x^2+y^2=4\)
\(\Rightarrow x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=\left(x+y\right)\left[\left(x^2+y^2\right)-xy\right]\)
\(=4\left(4-2\right)=8\)
x3+y3=(x+y)(x2-xy+y2)=(x+y(x2+2xy+y2-3xy)=(x+y)[(x+y)2-3xy]=4[16-6]=40
Đáp số: 40
\(x+y=4\Rightarrow\left(x+y\right)^2=4^2\Leftrightarrow x^2+2xy+y^2=16\Leftrightarrow x^2+2.2+y^2=16\)
\(\Leftrightarrow x^2+4+y^2=16\Leftrightarrow x^2+y^2=12\)
=>\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=4\left(12-2\right)=4.10=40\)