Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Có 3 trường hợp:
TH1: x=0 thì x2=0.
TH2: x< 0 thì x2=0
TH3: x>0 thì x2>0
Với x< 0 thì \(x^2\)> 0; 3x< 0
⇒ \(x^2\)> 3x
Với x≥ 0, xét hiệu \(x^2\)-3x= x.( x-3)
Nếu x= 0 hoặc x= 3 thì \(x^2\)-3x= 0⇒ \(x^2\)= 3x
Nếu 0< x< 3 thì\(x^2\)-3x< 0⇒ \(x^2\)< 3x
Nếu x> 3 thì\(x^2\)-3x> 0⇒\(x^2\)> 3x
HỌC TỐT
Lời giải:
$(-19)(-x)=19x$
Nếu $x>0$ thì $19x>0$
Nếu $x<0$ thì $19x<0$
Nếu $x=0$ thì $19x=0$
Nếu x < 0 => x^2 > x
Nếu x = 0 hoặc 1 => x^2 = x
Nếu x > 1 => x^2 > x
cho x thuộc z so sánh x^2 với 2x
Ta có x thuộc Z nên x^2 luôn luôn lớn hơn hoặc bằng 2x.
(trừ trường hợp số 1^2<2.1)
ta có : x-y= -9 => x = y + 9 ( 1 )
y-z = 10 => z = y + 10 (2 )
Thay (1) và (2 ) vào z + x = 11 ta có :
y + 9 +10 + y = 11
=> 2y + 19 = 11
=> 2y = -8
=> y = -4
thay y = - 4 vào (1 ) ta có x =5 vào 2 thì đk z = 6
x = 3 nhe bạn vì 3x = 3^2 => x=3
Ta có các phép so sánh sau : ( Với \(x\ne0\) )
+) Để \(x^2>3x\) \(\Leftrightarrow x>3\)
+) Để \(x^2< 3x\Leftrightarrow x< 3\)
+) Để \(x^2=3x\Leftrightarrow\orbr{\begin{cases}x=3\\x=0\end{cases}}\)