Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a^2(a+1)+2a(a+1)
=(a+1)(a^2+2a)
=a(a+1)(a+2)
đây là tích 3 số nguyên liên tiếp, mà trong đó thì chắc chắn có 1 số chia hết cho3, 1 số chia hết cho 2 nên tích đó chia hết cho 6.
a(2a-3)-2a(a+1)
= 2a^2 - 3a - 2a^2 - 2a
= - 5a chia hết cho 5
x^2 + 2x + 2
=(x+1)^2 +1
(x+1)^2 là số dương; 1 là số dương nên "cái kết quả trên" lớn hơn 0
-x^2 + 4x - 5
= - (x^2 - 4x + 5)
= - (x - 2)^2 + 1
vậy kết quả trên bé hơn 0
bài này mà gọi là bài lớp 8 hả còn dễ hơn bài lớp 6 em là hs lớp 6
a) \(36x^2-49=0\)
\(\Leftrightarrow\left(6x\right)^2-7^2=0\)
\(\Leftrightarrow\left(6x-7\right)\left(6x+7\right)=0\)
\(TH_1:6x-7=0\) \(TH_2:6x+7=0\)
\(\Leftrightarrow6x=7\) \(\Leftrightarrow6x=-7\)
\(\Leftrightarrow x=\dfrac{7}{6}\) \(\Leftrightarrow x=-\dfrac{7}{6}\)
Vậy pt có tập nghiệm \(S=\left\{\dfrac{7}{6};-\dfrac{7}{6}\right\}\)
Bài 2
a) 36x2-49=0
⇔ (6x)2-49=0
⇔(6x-7).(6x+7)=0
TH1: 6x-7=0 TH2: 6x+7=0
⇔6x=7 ⇔6x=-7
⇔x=7/6 ⇔x=-7/6
Sửa lại đề là x;y;z khác -1.
\(A=\frac{xy+2x+1}{xy+x+y+1}+\frac{yz+2y+1}{yz+y+z+1}+\frac{zx+2z+1}{zx+z+x+1}=\)
\(A=\frac{x\left(y+1\right)+x+1}{x\left(y+1\right)+y+1}+\frac{y\left(z+1\right)+y+1}{y\left(z+1\right)+z+1}+\frac{z\left(x+1\right)+z+1}{z\left(x+1\right)+x+1}=\)
\(A=\frac{x\left(y+1\right)+x+1}{\left(x+1\right)\left(y+1\right)}+\frac{y\left(z+1\right)+y+1}{\left(y+1\right)\left(z+1\right)}+\frac{z\left(x+1\right)+z+1}{\left(z+1\right)\left(x+1\right)}=\)vì x;y;z khác -1 nên:
\(A=\frac{x}{x+1}+\frac{1}{y+1}+\frac{y}{y+1}+\frac{1}{z+1}+\frac{z}{z+1}+\frac{1}{x+1}=\)
\(A=\frac{x}{x+1}+\frac{1}{x+1}+\frac{y}{y+1}+\frac{1}{y+1}+\frac{z}{z+1}+\frac{1}{z+1}=\frac{x+1}{x+1}+\frac{y+1}{y+1}+\frac{z+1}{z+1}=1+1+1=3\)
A = 3 với mọi x;y;z khác -1 nên A không phụ thuộc vào x;y;z. đpcm
câu a là a(2a-3) chia hết cho 5 nha
A . a(2a - 3 ) - 2a ( a+1)
=2a^2 - 3a - 2a^2 - 2a
=-5a
vi 5 chia het cho 5 => -5a chia het cho 5
=> a(2a-3)-2a(a+1) chia het cho 5
B . -x^2 + 4x - 5
=-(x^2 - 4x +5)
=-(x^2 - 4x + 4 + 1)
=-[ (x^2 - 4x + 4 ) +1 ]
=-[(x-2)^2 +1]
=-(x-2)^2 - 1
vi -(x-2)^2 < 0
=> -(x-2)^2 -1 < -1
=> -(x-2 )^2 - 1<0
=> -x^2 +4x - 5 < 0
\(A=x^{200}+x^{100}+1\)
\(=x^{200}-x^2+x^{100}-x^4+x^4+x^2+1\)
\(=x^2\left(x^{198}-1\right)+x^4\left(x^{96}-1\right)+\left(x^4+x^2+1\right)\)
\(=x^2\left(x^{^6}-1\right).A+x^4\left(x^6-1\right).B+x^4+x^2+1\)
\(x^6-1=\left(x^3-1\right)\left(x^3+1\right)=\left(x-1\right)\left(x^2+x+1\right)\left(x+1\right)\left(x^2-x+1\right)=\left(x-1\right)\left(x+1\right)\left(x^4+x^2+1\right)\)
Vậy \(A⋮\left(x^4+x^2+1\right)\)
Em thử giải,anh tự check lại ạ,em mới lớp 7 thôi.
Ta có: \(x+\frac{1}{x}\inℤ\Rightarrow\frac{x^2+1}{x}\inℤ\)
Do đó \(x^2+1⋮x\),mà \(x^2⋮x\Rightarrow1⋮x\Rightarrow x=\pm1\)
Với x = 1 thì \(A_n=x^n+\frac{1}{x^n}=1+1=2\inℤ\)
Với x = -1 thì \(A_n=x^n+\frac{1}{x^n}=\left(-1\right)+\left(-1\right)=\left(-2\right)\inℤ\)
Vậy ta có đpcm.