Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
(Bạn tự vẽ hình nha)
Vì xOy và yOz là hai góc kề bù
=> Tia Oy nằm giữa ai tia Ox và Oz(1)
xOy + yOz = 180o
Vì Oa là tia phân giác của xOy
=> Tia Oa nằm giữa 2 tia Ox và Oy(2)
xOa = aOy = 1/2 xOy
Vì Ob là tia phân giác của yOz
=> Tia Ob nằm giữa hai tia Oy và Oz(3)
yOb = bOz = 1/2 yOz
Từ (1); (2) và (3) => Tia Oy nằm giữa hai tia Oa và Ob
=> aOb = aOy + yOb =\(\frac{1}{2}\widehat{xOy}+\frac{1}{2}\widehat{yOz}=\frac{1}{2}\left(\widehat{xOy}+\widehat{yOz}\right)=\frac{1}{2}\times180^o=90^o\)
=> Oa vuông góc với Ob (đpcm)
ta có : oa là phân giác của góc xoy
ob là phân giác của góc yoz
=) góc xoa= aoy
góc yob = góc boz
=) góc boy + góc yoa = góc zob + góc xoa
(=) góc aob = góc góc zob + góc xoa
mà góc boy + góc yoa + góc góc zob + góc xoa = 180 độ
=) góc aob = góc góc zob + góc xoa = 180 độ /2 = 90 độ
=) góc aob vuông =) oa vuông góc vs ob
chúc bn học tốt
a) bOy^ + bOx^ = xOy^
Mà bOy^ = bOx^
=> 2* bOy^ = 40o
bOy^ =20o
b) bOy^ = bOx^ = 20o
=> xOa^ = bOx^ + bOa^ = 20o + 90o = 110o
Oa nằm trong góc yOz (1)
=> xOa^ + aOz^ = xOz^
aOz^ = xOz^ - xOa^ = 180o - 110o = 70o
Ta có: yOb^ + yOa^ = bOa^
yOa^ = bOa^ - yOb^ = 90o - 20o = 70o
=> aOz^ = aOy^ (2)
Từ (1) và (2) => Oa là tia phân giác của yOz^
a ) Vì Oa ⊥⊥ OM
=> aOmˆaOm^ = 90o
Mà MOaˆMOa^ + aONˆaON^ = MONˆMON^
=> aOnˆaOn^ = MONˆMON^ - MOaˆMOa^ = 120o - 90o = 30o
Vậy aONˆaON^ = 30o
Vì Ob ⊥⊥ ON
=> bONˆbON^ = 90o
Mà bOMˆbOM^ + bONˆbON^ = MONˆMON^
=> bOMˆbOM^= MONˆMON^ - bONˆbON^ = 120o - 90o = 30o
Vậy bOMˆbOM^ = aONˆ
Vì Oz là tia phân giác của \(\widehat {xOy}\) nên \(\widehat {xOz} = \widehat {zOy} = \frac{1}{2}.\widehat {xOy} = \frac{1}{2}.120^\circ = 60^\circ \)
Vì Oz’ là tia phân giác của \(\widehat {yOx'}\) nên \(\widehat {x'Oz'} = \widehat {yOz'} = \frac{1}{2}.\widehat {yOx'} = \frac{1}{2}.60^\circ = 30^\circ \)
Vì tia Oy nằm trong \(\widehat {zOz'}\) nên \(\widehat {zOz'}=\widehat {zOy} + \widehat {yOz'} = 60^\circ + 30^\circ = 90^\circ \)
Vậy \(\widehat {zOy} = 60^\circ ,\widehat {yOz'} = 30^\circ ,\widehat {zOz'} = 90^\circ \)
Chú ý:
2 tia phân giác của 2 góc kề bù thì vuông góc với nhau
a. ta có \(xOy+yOz=180^0\Leftrightarrow xOy+\frac{4}{5}xOy=180^0\Rightarrow xOy=100^0\Rightarrow yOz=80^0\)
b. ta có :
\(\hept{\begin{cases}yOa=\frac{1}{2}xOy=50^0\\yOb=\frac{1}{2}yOz=40^0\end{cases}}\)
c.\(aOb=yOa+yOb=90^0\) nên Oa vuông góc với Ob
\(\widehat{aOy}=\dfrac{\widehat{xOy}}{2}\)
\(\widehat{bOy}=\dfrac{\widehat{zOy}}{2}\)
Do đó: \(\widehat{aOy}+\widehat{bOy}=\dfrac{1}{2}\left(\widehat{xOy}+\widehat{yOz}\right)=\dfrac{1}{2}\cdot180^0\)
hay \(\widehat{aOb}=90^0\)(đpcm)