K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 5 2017

a) Áp dụng hệ quả định lý thales:

\(\frac{MQ}{CD}+\frac{MP}{AB}=\frac{AM}{AC}+\frac{MC}{AC}=\frac{AC}{AC}=1\)

Áp dụng BĐT bunyakovsky:

\(\left(\frac{1}{AB^2}+\frac{1}{CD^2}\right)\left(MP^2+MQ^2\right)\ge\left(\frac{MP}{AB}+\frac{MQ}{CD}\right)^2=1\)

\(\Rightarrow\frac{1}{AB^2}+\frac{1}{CD^2}\ge\frac{1}{MP^2+MQ^2}\)

dấu = xảy ra khi \(\frac{MC}{AM}=\frac{CD^2}{AB^2}\)

b) chưa nghĩ :v

Y
23 tháng 6 2019

18. a) Dễ cm : AE = AF

+ EF // BH \(\Rightarrow\frac{AF}{AB}=\frac{AC}{AH}\Rightarrow\frac{AE}{AC}=\frac{AC}{AH}\)

\(\Rightarrow AC^2=AE\cdot AH\Rightarrow AC=\sqrt{AE\cdot AH}\)

b) Qua C kẻ đg thẳng // với AD cắt AB tại I

+ AD là đg TB của ΔBCI

=> CI = 2AD \(\Rightarrow CI^2=\left(2AD\right)^2=4AD^2\)

+ CI // AD => CI ⊥ BC

+ ΔBCI vuông tại C, đg cao CF

\(\Rightarrow\frac{1}{CF^2}=\frac{1}{BC^2}+\frac{1}{CI^2}=\frac{1}{BC^2}+\frac{1}{4AD^2}\)

bài cuối tương tự câu a) bài trên

Y
23 tháng 6 2019

16. Qua B kẻ đg thẳng // với AC cắt CD tại I

Gọi BH là chiều cao của hình thang ABCD

+ BI // AC => BI ⊥ BD

+ Tứ giác ABIC là hbh => AB = CI

=> AB + CD = CD + CI = DI

+ ΔBDH vuông tại H

\(\Rightarrow DH=\sqrt{BD^2-BH^2}=20\) ( cm )

+ ΔBDI vuông tại B, đg cao BH

\(\Rightarrow BD^2=DH\cdot DI\)

\(\Rightarrow DI=\frac{29^2}{20}=42,05\) ( cm )

=> Độ dài đg TB của hình thang ABCD là :

\(\frac{1}{2}\left(AB+CD\right)=\frac{1}{2}DI=21,025\) ( cm )

13 tháng 6 2018

A B C D O M N K H E F I J T P

a) Ta có: Tứ giác ACBD nội tiếp (O;R) có 2 đường chéo là 2 đường kính vuông góc với nhau.

Nên tứ giác ACBD là hình vuông.

Xét tứ giác ACMH: ^ACM=^ACB=900; ^AHM=900

=> Tứ giác ACMH nội tiếp đường tròn

Do tứ giác ACBD là 1 hình vuông nên ^BCD=1/2.CAD=450 

=> ^BCD=^MAN hay ^MCK=^MAK => Tứ giác ACMK nội tiếp đường tròn.

b) Gọi giao điểm của tia AE với tia tiếp tuyến BF là I. AF gặp MH tại J.

Ta có: Điểm E nằm trên (O) có đg kính AB => ^AEB=900

=> \(\Delta\)BEI vuông tại E. Dễ thấy \(\Delta\)BFE cân tại F => ^FEB=^FBE

Lại có: ^FEB+^FEI=900 => ^FBE+^FEI=900. Mà ^FBE+^FIE=900

Nên ^FEI=^FIE => \(\Delta\)EFI cân tại F => EF=IF. Mà EF=BF => BF=IF

Theo hệ quả của ĐL Thales ta có: \(\frac{MJ}{IF}=\frac{HJ}{BF}=\frac{AJ}{AF}\)=> MJ=HJ (Do IF=BF)

=> J là trung điểm của HM  => Đpcm.

c) Trên tia đối của tia DB lấy T sao cho DT=CM.

Gọi P là hình chiếu của A xuống đoạn MN.

Dễ dàng c/m \(\Delta\)ACM=\(\Delta\)ADT (c.g.c) => ^CAM=^DAT và AM=AT

mà ^CAM phụ ^MAD => ^DAT+^MAD=900 => ^MAT=900

=> ^MAN=^TAN=1/2.^MAT=450.=> \(\Delta\)MAN=\(\Delta\)TAN (c.g.c)

=> ^AMN=^ATN (2 góc tương ứng)  hay ^AMP=^ATD

=> \(\Delta\)APM=\(\Delta\)ADT (Cạnh huyền góc nhọn) => AD=AP (2 cạnh tương ứng).

Mà AD có độ dài không đổi (Vì AD=căn 2 . R) => AP không đổi.

Suy ra khoảng cách từ điểm A đến đoạn MN là không đổi

=> MN tiếp xúc với đường tròn tâm A cố định bán kính AD=căn 2.R.

Vậy...

 ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ 

Sắp đến Tết rùi nè ae.Zui nhểy!Đứa nào đỗ nhớ khao tao nhá!

  • Tên: ღ༺Nhật༒Tân✰ ²ƙ⁶༻ღ 
  • Đang học tại: Trường THCS Lập Thạch
  • Địa chỉ: Huyện Lập Thạch - Vĩnh Phúc
  • Điểm hỏi đáp: 16SP, 0GP
  • Điểm hỏi đáp tuần này: 1SP, 0GP
  • Thống kê hỏi đáp
17 tháng 8 2019

A B C M O D E F I P Q T

1) Ta có 4 điểm B,O,C,M cùng thuộc đường tròn đường kính OM (^MBO = ^MCO = 900) (1)

Do MI // AB và MB tiếp xúc với (O) tại B nên ^CIM = ^CAB = ^CBM

=> 4 điểm B,I,C,M cùng thuộc một đường tròn (2)

Từ (1) và (2) suy ra 5 điểm M,B,O,I,C cùng thuộc một đường tròn (đpcm).

2) Theo câu a thì M,B,I,C cùng thuộc (OM), có BC giao IM tại F => FI.FM = FB.FC

Đường tròn (O) có dây BC giao DE tại F nên FB.FC = FD.FE

Do vậy FI.FM = FD.FE => \(\frac{FI}{FE}=\frac{FD}{FM}\) (đpcm).

3) Điểm I thuộc đường tròn (OM) => ^OIM = 900 hay ^QIM = 900

Dễ thấy FQ.FT = FB.FC = FI.FM, suy ra tứ giác QMTI nội tiếp => ^QTM = ^QIM = 900

=> \(\Delta\)QTM vuông tại T. Theo ĐL Pytagoras: \(TQ^2+TM^2=QM^2\)

Vậy thì \(\frac{TQ^2+TM^2}{MQ^2}=1.\)

10 tháng 10 2017

Đường tròn c: Đường tròn qua B_1 với tâm O Đoạn thẳng i: Đoạn thẳng [F, A] Đoạn thẳng k: Đoạn thẳng [A, C] Đoạn thẳng l: Đoạn thẳng [A, E] Đoạn thẳng m: Đoạn thẳng [E, M] Đoạn thẳng n: Đoạn thẳng [D, F] Đoạn thẳng p: Đoạn thẳng [G, B] Đoạn thẳng q: Đoạn thẳng [E, C] O = (2.08, 1.84) O = (2.08, 1.84) O = (2.08, 1.84) A = (12.48, 2.58) A = (12.48, 2.58) A = (12.48, 2.58) Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm B: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm D: Điểm trên c Điểm C: Giao điểm đường của c, f Điểm C: Giao điểm đường của c, f Điểm C: Giao điểm đường của c, f Điểm E: Giao điểm đường của c, g Điểm E: Giao điểm đường của c, g Điểm E: Giao điểm đường của c, g Điểm F: Giao điểm đường của c, h Điểm F: Giao điểm đường của c, h Điểm F: Giao điểm đường của c, h Điểm G: Giao điểm đường của c, i Điểm G: Giao điểm đường của c, i Điểm G: Giao điểm đường của c, i Điểm M: Giao điểm đường của f, j Điểm M: Giao điểm đường của f, j Điểm M: Giao điểm đường của f, j

a)  Do DF // AC nên \(\widehat{MAG}=\widehat{GFD}\)  (Hai góc so le trong) . 

Lại có \(\widehat{GFD}=\widehat{GED}\)   (Hai góc nội tiếp cùng chắn cung GD)

Nên \(\widehat{MAG}=\widehat{GED}\)

Xét tam giác AMG và tam giác EMA có:

\(\widehat{MAG}=\widehat{MEA}\) (cmt)

Góc M chung

Vậy nên \(\Delta AMG\sim\Delta EMA\left(g-g\right)\Rightarrow\frac{MA}{ME}=\frac{MG}{MA}\Rightarrow MA^2=MG.ME\) 

b) Do tứ giác ECBG nội tiếp nên \(\widehat{BCE}=\widehat{BGM}\) (Góc ngoài tại đỉnh đối của tứ giác nội tiếp)

Vậy xét tam giác MGB và MCE có:

\(\widehat{BGM}=\widehat{ECM}\left(cmt\right)\)

Góc M chung

Vậy nên \(\Delta MGB\sim\Delta MCE\left(g-g\right)\)

c) Theo câu a, ta có \(AM^2=MG.ME\)

Theo câu b, \(\Delta MGB\sim\Delta MCE\Rightarrow\frac{MG}{MC}=\frac{MB}{ME}\Rightarrow MG.ME=MB.MC\)

Vậy nên \(MA^2=MB.MC\)

Suy ra \(MA^2+MA.MC=MB.MC+MA.MC\)

\(\Leftrightarrow MA\left(MA+MC\right)=MC\left(MB+MA\right)\)

\(\Leftrightarrow MA.AC=MC.AB\)

\(\Leftrightarrow AB\left(AC-AM\right)=MA.AC\)

\(\Leftrightarrow AB.AC-AB.AM=AM.AC\)

\(\Leftrightarrow AB.AC=AM\left(AB+AC\right)\)

\(\Leftrightarrow\frac{1}{AM}=\frac{AB+AC}{AB.AC}\)

\(\Leftrightarrow\frac{1}{AM}=\frac{1}{AB}+\frac{1}{AC}\left(đpcm\right)\)

10 tháng 12 2019

ko biet

27 tháng 9 2019

Đính chính lại nhé

\(\frac{BE}{AE}=\frac{1}{2}\) chứ không phải \(\frac{DE}{AE}\) nhé