K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 12 2021

a: Xét tứ giác ADFE có 

AE//DF

AE=DF

Do đó: ADFE là hình bình hành

mà AE=AD

nên ADFE là hình thoi

mà \(\widehat{EAD}=90^0\)

nên ADFE là hình vuông

22 tháng 12 2021

cho câu trả lời b đc ko??

Đề sai rồi bạn

a: Xét ΔBAC có

E,F lần lượt là trung điểm của BA,BC

=>EF là đường trung bình

=>EF//AC và EF=AC/2

Xét ΔCDA có

G,H lần lượt là trung điểm của DC,DA

=>GH là đường trung bình

=>GH//AC và GH=AC/2

=>EF//GH và EF=GH

Xét tứ giác EFGH có

EF//GH

EF=GH

=>EFGH là hình bình hành

b: Để EFGH là hình chữ nhật thì HE vuông góc EF

=>AC vuông góc BD

a: Xét tứ giác ADFE có

AE//DF

AE=DF

AE=AD

góc EAD=90 độ

Do đó: AEFD là hình vuông

b: Xét tứ giác EBCF có

EB//CF
EB=CF

góc EBC=90 độ

EB=BC

Do đó: EBCF là hình vuông

=>EN=FN và góc ENF=90 độ; N là trung điểm của CF

Xét ΔEDC co

EF là trung tuyên

EF=DC/2

Do đo: ΔEDC vuông tại E

Xét tứ giác ENFM có

góc ENF=góc EMF=góc MEN=90 độ

EN=NF

Do đó; ENFM là hình vuông

a) Xét ΔABC có

E là trung điểm của AB(gt)

F là trung điểm của BC(gt)

Do đó: EF là đường trung bình của ΔABC(Định nghĩa đường trung bình của tam giác)

⇒EF//AC và \(EF=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(1)

Xét ΔADC có

H là trung điểm của AD(gt)

G là trung điểm của CD(gt)

Do đó: HG là đường trung bình của ΔADC(Định nghĩa đường trung bình của tam giác)

⇒HG//AC và \(HG=\dfrac{AC}{2}\)(Định lí 2 về đường trung bình của tam giác)(2)

Từ (1) và (2) suy ra HG//EF và HG=EF

Xét ΔABD có 

E là trung điểm của AB(gt)

H là trung điểm của AD(gt)

Do đó: EH là đường trung bình của ΔABD(Định nghĩa đường trung bình của tam giác)

⇒EH//BD và \(EH=\dfrac{BD}{2}\)(Định lí 2 về đường trung bình của tam giác)

Ta có: EH//BD(cmt)

BD⊥AC(gt)

Do đó: EH⊥AC(Định lí 2 từ vuông góc tới song song)

Ta có: HG//AC(cmt)

EH⊥AC(Cmt)

Do đó: HG⊥HE(Định lí 2 từ vuông góc tới song song)

hay \(\widehat{EHG}=90^0\)

Xét tứ giác EHGF có 

HG//EF(cmt)

HG=FE(cmt)

Do đó: EHGF là hình bình hành(Dấu hiệu nhận biết hình bình hành)

Hình bình hành EHGF có \(\widehat{EHG}=90^0\)(cmt)

nên EHGF là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Ta có: EFGH là hình chữ nhật(cmt)

nên \(S_{EFGH}=EF\cdot EH\)

\(\Leftrightarrow S_{EFGH}=\dfrac{AC}{2}\cdot\dfrac{BD}{2}=\dfrac{10}{2}\cdot\dfrac{8}{2}=5\cdot4=20cm^2\)

Vậy: Diện tích tứ giác EFGH khi AC=10cm và BD=8cm là 20cm2

c) Hình chữ nhật EFGH trở thành hình vuông khi EH=HG

hay AC=BD

Vậy: Khi tứ giác ABCD có thêm điều kiện AC=BD thì EFGH trở thành hình vuông

a: xét tứ giác ADFE có 

AE//DF

AE=DF

Do đó: ADFE là hình bình hành

mà \(\widehat{EAD}=90^0\)

nên ADFE là hình chữ nhật

mà AE=AD

nên ADFE là hình vuông

c: Xét tứ giác BEDF có 

BE//DF

BE=DF

Do đó: BEDF là hình bình hành

Suy ra: DE//BF và DE=BF(1)

hay ME//NF

Xét tứ giác BEFC có

BE//FC

BE=FC

Do đó: BEFC là hình bình hành

=>EC và BF cắt nhau tại trung điểm của mỗi đường

=>N là trung điểm của BF

=>FN=BF/2(2)

Ta có: AEFD là hình vuông

=>AF và DE vuông góc với nhau tại trung điểm của mỗi đường và bằng nhau

=>M là trung điểm của DE

=>EM=DE/2(3)

Từ (1), (2) và (3) suy ra EM=FN

Xét tứ giác EMFN có 

EM//FN

EM=FN

Do đó: EMFN là hình bình hành

mà \(\widehat{EMF}=90^0\)

nên EMFN là hình chữ nhật

21 tháng 12 2018

giúp mình với sắp thi rồi

11 tháng 12 2021

a: Xét ΔBAD có 

E là tđiểm của AB

H là tđiểm của BD

Do đó: EH là đường trung bình của ΔABD

Suy ra: EH//AD và EH=AD/2(1)

Xét ΔACD có

F là trung điểm của AC

G là trung điểm của CD
Do đó: FG là đường trung bình của ΔACD

Suy ra: FG//AD và FG=AD/2(2)

Từ (1) và (2) suy ra EH//GF và EH=GF

hay EFGH là hình bình hành