K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 5 2016

ta có diện tích hai tam giác AFE bằng BFE ( do tam giác ABF có đường trung tuyến FE)

kết hợp với giả thiết ta có diện tích ADF bằng BCF

hay d(A,DF).DF.1/2=d(B,CF).CF.1/2

hay d(A,DF)=d(B,CF)d(A,DF)=d(B,CF) hay AB song song với DC 

vậy => đpcm

8 tháng 8 2019

A B C D I E F Q R S

Ta có ^SDI = ^SAI, ^SBI = ^SCI => \(\Delta\)DSB ~ \(\Delta\)ASC (g.g) => \(\Delta\)ASD ~ \(\Delta\)CSB (c.g.c)

Mà AD = BC nên tỉ số đồng dạng của 2 tam giác trên là 1, nói cách khác \(\Delta\)ASD = \(\Delta\)CSB

Do đó ^SBC = ^SDA và SB = SD. Kết hợp với BE = DF suy ra \(\Delta\)SEB = \(\Delta\)SFD (c.g.c)

Từ đây dễ suy ra \(\Delta\)ESF ~ \(\Delta\)BSD => ^SEF = ^SBD = ^SCI => Tứ giác CERS nội tiếp

=> ^SRQ = ^ECS = ^BCS = ^SIQ => Tứ giác QIRS nội tiếp (đpcm).

Ta có : Tứ giác MPNQ là hình bình hành

 MN và PQ cắt nhau tại trung điểm I của mỗi đường

Ta có : Tứ giác EPFQ là hình bình hành

 EF đi qua I

Vậy EF , MN và PQ đồng quy