K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên
VT
0
HT
Cho tứ giác ABCD, O là một điểm nằm trong tứ giác đó. Xác định vị trí của M để OA+OB+OC+OD nhỏ nhất.
3
L
30 tháng 8 2018
cậu tự vẽ hình nhé tớ giải cho :
ta có : \(OA+OC\ge AC\)
\(OB+OD\ge BD\)
=> \(OA+OB+OC+OD\ge AC+BD\)
Min của OA+OB+OC+OD là AC+BD <=> O là giao điểm của 2 đường chéo
Gọi BH là đường cao của ∆ABO
Ta có 2SAOB = OA . BH
Nhưng BH ≤ BO nên 2SAOB ≤ OA . OB
mà OA.OB
Do đó 2SAOB
Dấu “=” xảy ra OA OB và OA = OB
Chứng minh tương tự ta có:
2SBOC ; 2SCOD
2SAOD
Vậy 2S = 2(SAOB + SBOC + SCOD + SDOA) ≤
Hay 2S ≤ OA2 + OB2 + OC2 + OD2
Dấu bằng xẩy ra khi và chỉ khi OA = OB = OC = OD
và là hình vuông tâm O.