Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(BC=AD=\sqrt{AC^2-AB^2}=2a\)
a/ \(T=\left|3\overrightarrow{AB}-4\overrightarrow{BC}\right|\Rightarrow T^2=9AB^2+16BC^2-24\overrightarrow{AB}.\overrightarrow{BC}\)
\(=9a^2+64a^2=73a^2\Rightarrow T=a\sqrt{73}\)
b/ \(T^2=4AB^2+9BC^2+12.\overrightarrow{BA}.\overrightarrow{BC}=4AB^2+9BC^2=40a^2\)
\(\Rightarrow T=2a\sqrt{10}\)
c/ \(T=\left|\overrightarrow{AD}+3\overrightarrow{BC}\right|=\left|\overrightarrow{AD}+3\overrightarrow{AD}\right|=\left|4\overrightarrow{AD}\right|=4AD=8a\)
d/ \(T=\left|2\overrightarrow{DC}-3\overrightarrow{DC}\right|=\left|-\overrightarrow{DC}\right|=CD=AB=a\)
Bài 2:
\(\left|\overrightarrow{BC}+\overrightarrow{BA}\right|=\left|\overrightarrow{AC}\right|=AC=a\sqrt{2}\)
\(\left|\overrightarrow{AB}-\overrightarrow{AC}\right|=\left|\overrightarrow{CA}+\overrightarrow{AB}\right|=CB=a\)
\(\left|\overrightarrow{AB}+\overrightarrow{AD}\right|=\left|\overrightarrow{AC}\right|=AC=5\)
\(\left|\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{CA}\right|=\left|\overrightarrow{BC}+\overrightarrow{AD}\right|=\left|2\overrightarrow{AD}\right|=2AD=8\)
Kẻ hbh ABFC
Dễ tính được ACD=530
nên ACB=37=CBF
Theo định lý cos ta tính được AF
bạn tự tính nhá mk ko có mt
Gọi O là tâm hình vuông
\(\left|\overrightarrow{AC}-\overrightarrow{BD}\right|=\left|2\overrightarrow{OC}-2\overrightarrow{OD}\right|=2\left|\overrightarrow{OC}+\overrightarrow{DO}\right|=2\left|\overrightarrow{DC}\right|=2a\)
\(\left|\overrightarrow{AB}+\overrightarrow{CB}+\overrightarrow{DC}+\overrightarrow{AD}\right|=\left|\overrightarrow{AB}+\overrightarrow{AD}+\overrightarrow{DC}+\overrightarrow{CB}\right|\)
\(=\left|\overrightarrow{AC}+\overrightarrow{DB}\right|=\left|\overrightarrow{AC}-\overrightarrow{BD}\right|=2a\) (như kết quả câu trên)