Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi I là trung điểm của BC
Ta có: IB = IC = (1/2).BC = (1/2).13 = 6,5 (cm) (1)
Kẻ IH ⊥ AD. Khi đó HI là đường trung bình của hình thang ABCD.
Từ (1) và (2) suy ra : IB = IH = R
Vậy đường tròn (I ; BC/2 ) tiếp xúc với đường thẳng AD
bn tựu vẽ hk nha
a, dễ cm tứ giác ABCD là hình thang
ta có AD//MO//CB(cùng vuông góc vs DC)
A0=B0
từ đây suy ra DM=MC
B, TỪ M KẺ MH VUÔNG GÓC VS AB
TA CÓ GÓC DAM=GÓC AMO( do AD//MO) (1)
LẠI CÓ GÓC AMO=GÓC MAO( do MO=AO) (2)
TỪ (1)(2) SUY RA GÓC DAM=GÓC MAO
LẠI CÓ GÓC D=GÓC MHA=90
SUY RA TAM GIAC DMA=TAM GIAC HMA
SUY RA AD=AH
tự BC=HB
TỪ ĐÂY SUY RA AD+CB=AH+BH=AB KO ĐỔI
C, TA CÓ MH=DM=MC(CMT)
LẠI CÓ MHVUOONG GÓC VS AB
SUY RA DƯỜNG TRÒN CD TX VS AB
D, TRONG HT VUÔNG ABCD CÓ DC<=AB
SUY RA SABCD=\(\frac{\left(AD+CB\right).DC}{2}=\frac{AB.CD}{2}< =\frac{AB^2}{2}\)
DẤU = XẢY RA KHI M NẰM CHÍNH GIỬA CUNG AB
Cô hướng dẫn nhé. :)
Tứ giác AIDE nội tiếp đường tròn đường kính AI.
b. Do câu a ta có AIDE là tứ giác nội tiếp nên gó IDE = góc IAE. Lại có góc IAE = góc CDB. Từ đó suy ra DB là tia phân giac góc CDE.
c. Ta thấy góc CDE = 2 góc CAB (Chứng minh b). Lại có góc COB = 2 góc CAB. Từ đó suy ra góc CDE = góc COB. Hay OEDC là tứ giác nội tiếp ( Góc ngoài ở đỉnh bằng góc đối diện )
Chúc em học tốt ^^
Ai trả lời hộ điiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiinhanh lênnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnnn
Abcd +CD + AB= 0
+) Chứng minh nếu AD // BC thì đường tròn (I) đường kính CD tiếp xúc AB:
Gọi tiếp điểm giữa (O) và CD là H .Từ I hạ IK vuông góc AB tại K.
Khi đó tứ giác KOHI nội tiếp đường tròn (OI) => ^KHI = ^KHD = ^KOI
Dễ thấy tứ giác ABCD là hình thang (Vì BC // AD) có đường trung bình OI nên OI // BC // AD
=> ^KOI = ^KBC. Do đó ^KHD = ^KBC => Tứ giác BKHC nội tiếp. Tương tự, tứ giác ADHK nội tiếp
Từ đó ^DKC = ^DKH + ^CKH = ^DAH + ^CBH. Kết hợp với AD // BC suy ra ^DKC = ^BHA = 900
=> Điểm K thuộc đường tròn (I). Mà AB vuông góc IK tại K nên (I) tiếp xúc AB (*)
+) Chứng minh nếu (I) đường kính CD tiếp xúc với AB thì AD // BC:
Ta gọi tiếp điểm giữa (I) và AB là K, qua K kẻ đường thẳng song song với AH cắt CD tại C'
Lúc này, ^KC'I = ^AHD = ^ABH. Ta có KC' // AH; AH vuông góc BH => KC' vuông góc BH
Do KI vuông góc AB nên ^IKC' = ^ABH. Suy ra ^KC'I = ^IKC' => \(\Delta\)KIC' cân tại I
=> IC' = IK = IC. Mà C và C' nằm cùng phía so với IK nên C trùng C'.
Từ đây ^KCH = ^AHI = ^KBH => Tứ giác KHCB nội tiếp. Hoàn toàn tương tự, tứ giác AKHD nội tiếp
Vậy thì ^HCB = ^HKA = 1800 - ^ADH => AD // BC (**)
+) Qua (*) và (**), ta thu được ĐPCM.