Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét tứ giác AMCN có
AM//CN
AM=CN
Do đó: AMCN là hình bình hành
a) Xét tam giác ABD có :
M là trung điểm của AB
F là trung điểm của BD
=) MF là đường trung bình của tam giác ABD
=) MF//AD và MF=\(\frac{1}{2}\)AD (1)
Xét tam giác tam giác ACD có :
N là trung điểm CD
E là trung điểm AC
=) NE là đường trung bình của tam giác ACD
=) NE//AD và NE=\(\frac{1}{2}\)AD (2)
Từ (1) và (2) =) Tứ giác MENF là hình bình hành
a: Xét tứ giác ABPD có
AB//PD
AB=PD
Do đó: ABPD là hình bình hành
Xét ΔABC có
M là trung điểm của AB
N là trung điểm của BC
Do đó: MN là đường trung bình
=>MN//AC và MN=AC/2(1)
Xét ΔADC có
Q là trung điểm của AD
P là trung điểm của CD
Do đó: QP là đường trung bình
=>QP//AC và QP=AC/2(2)
Từ (1) và (2) suy ra MN//PQ và MN=PQ
hay MNPQ là hình bình hành
b: Để MNPQ là hình thoi thì MN=MQ
hay AC=BD
Gọi O là giao điểm của AC, BD
Vì O là tâm đối xứng của hình bình hành nên ta có:
MN đi qua O và OM = ON
hiển nhiên O là trung điểm EF
=> MENF là hình bình hành (1)
mặt khác:
EF = FD = 2OF => OF = FD/2
từ AD = FD = BD/3 và ON là đường trung bình của tgiác ACD nên
ON = AD/2 = FD/2 = OF => MN = EF (2)
từ (1) và (2) => MENF là hình chữ nhật
b) MENF là hình vuông khi và chỉ khi hình chữ nhật MENF có 2 đường chéo vuông góc: MN vuông EF
<=> MN vuông BD <=> AD vuông BD
chúc you học tốt!! ^^
ok mk nha!!! 45464564556765587696532543545654645654645756756756756585634564634
bn đang hok lớp 8 ak giống mk!! ^^
76756768534556345634346654767567636456574675765